
“Intuition behind LSTM”
Vikram Voleti

IIIT Hyderabad

Neural Networks

Neural Networks

Perceptron: linear combination -> non-linearity

Non-linearity “squashifies” the output - sigmoid: 0 to 1, tanh: -1 to 1, relu: 0 to inf

Sigmoid was chosen because: 1) “squashifies” between 0 & 1 for convenient binary classification
 2) Can act as probability, to put a thresholded on
 3) derivative is easy to compute

Source: https://github.com/voletiv/myPythonNeuralNetwork

https://github.com/voletiv/myPythonNeuralNetwork

Neural Networks

Why non-linearity?
Linear combination will only give linear boundaries between classes. Non-linearities make

neural networks universal approximators.

Source: http://neuralnetworksanddeeplearning.com/chap4.htm

http://neuralnetworksanddeeplearning.com/chap4.html

Vanishing Gradient Problem

Key reason:

Fractional derivatives of
non-linearities

(That’s why ReLU is preferred.)

(Gradient gets worse with number of layers)

Problem 1: Training neural networks via gradient descent using backpropagation incurs
vanishing/exploding gradient problem.

Vanilla RNN

Problem 2: Fixed input size. (Sequence Learning?)

Solution: Recurrent Neural Networks

Source: colah.github.io, Nature

http://colah.github.io/

Vanilla RNN - Vanishing Gradient Problem

Back-Propagation Through Time (BPTT)
(Gradient gets worse with time)

Source: http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/

Key reason: Haphazard updation of cell state

Hint: Related to eigenvalues of weight matrices

Problem 3: Training recurrent neural networks incurs vanishing/exploding gradient problem.

http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/

LSTM

Problem: Vanishing/Exploding gradients in RNNs

Solution: Long Short-Term Memory (Hochreiter and Schmidhuber, 1997)

[link]

Source: colah.github.io

Introducing: Long-term memory (cell state), short-term memory (working memory/cell output)

http://www.bioinf.jku.at/publications/older/2604.pdf
http://colah.github.io/

LSTM

Source: colah.github.io, http://blog.echen.me/2017/05/30/exploring-lstms

3 Gates: (sigmoid units in the diagram)

1. Forget gate

2. Input gate

3. Output gate

http://colah.github.io/
http://blog.echen.me/2017/05/30/exploring-lstms/

LSTM - forget gate

Source: colah.github.io, http://blog.echen.me/2017/05/30/exploring-lstms

1. Forget Gate:

● Remember only some parts of the long-term memory
and forget the rest.

● Decide what to remember based on current input, and
previous working memory.

Eg.: Remember that a character had died, forget the colour of their shirt.
 Remember the currently called function, forget a returned value.

C(t-1)

h(t-1)

forget_gate(t) = sigmoid(Wf (x(t), h(t-1)))

remembered_cell_state(t) = forget_gate(t) .* C(t-1)

The forget_gate has a sigmoid activation so as to act as a fraction on the previous long-term memory/cell state - hence
deciding what fraction to remember and what fraction to forget.

(Wf includes bias)

http://colah.github.io/
http://blog.echen.me/2017/05/30/exploring-lstms/

LSTM - input gate

Source: colah.github.io, http://blog.echen.me/2017/05/30/exploring-lstms

2. Input Gate:

● Remember only some parts of the current input &
previous working memory.

● Decide what to remember based on current input &
previous working memory.

Eg.: The latest murder news, not an irrelevant character.
 A new variable, not a comment.

C(t-1)

h(t-1)

input_gate(t) = sigmoid(Wi (x(t), h(t-1)))

input_information(t) = tanh(Wa (x(t), h(t-1)))

relevant_input_information(t) = input_gate(t) .* input_information(t)

The input_gate has a sigmoid activation so as to act as a fraction on the input information - hence deciding what fraction
to consider and what fraction to let go.

The input_information has a tanh activation so as to squashify the information between -1 and 1.

http://colah.github.io/
http://blog.echen.me/2017/05/30/exploring-lstms/

LSTM - update long-term memory

Source: colah.github.io, http://blog.echen.me/2017/05/30/exploring-lstms

Update long-term memory:

● Add the relevant input information to the long-term
memory.

Eg.: Remember the latest news, don’t remember an irrelevant character.
 Remember a new variable, don’t remember a comment.

C(t-1)

h(t-1)

C(t) = remembered_cell_state(t) + relevant_input_information(t)

C(t)

h(t)

http://colah.github.io/
http://blog.echen.me/2017/05/30/exploring-lstms/

LSTM - output gate

Source: colah.github.io, http://blog.echen.me/2017/05/30/exploring-lstms

3. Output Gate:

● Having saved relevant information into long-term
memory, retrieve some working memory.

● Decide what to retrieve based on current input &
previous working memory.

Eg.: Retrieve the name of murderer, don’t retrieve the parents of victim.
 Retrieve the updated variable, don’t retrieve the nesting structure.

C(t-1)

h(t-1)

output_gate(t) = sigmoid(Wo (x(t), h(t-1)))

retrieved_memory(t) = tanh(C(t))

h(t) = output_gate(t) .* retrieved_memory(t)

The output_gate has a sigmoid activation so as to act as a fraction on the retrieved information - hence deciding what
fraction to keep and what fraction to ignore.

The retrieved_memory has a tanh activation so as to squashify the retrieved information between -1 and 1.

C(t)

h(t)

http://colah.github.io/
http://blog.echen.me/2017/05/30/exploring-lstms/

LSTM

Source: colah.github.io, http://blog.echen.me/2017/05/30/exploring-lstms

SUMMARY:

Using (x(t), h(t-1)), i.e. current input and previous working memory,

● forget unimportant long-term memory,

● compute relevant input information, and add it to the long-term memory,

● retrieve relevant working memory from long-term memory.

C(t-1)

h(t-1)

C(t)

h(t)

http://colah.github.io/
http://blog.echen.me/2017/05/30/exploring-lstms/

Variant - Peephole

Source: colah.github.io, http://blog.echen.me/2017/05/30/exploring-lstms

● Same as LSTM, except use long-term memory as well for all decisions:

○ (x(t), h(t-1), C(t-1)) for forget and input gates,

○ (x(t), h(t-1), C(t)) for output gate.

http://colah.github.io/
http://blog.echen.me/2017/05/30/exploring-lstms/

LSTM

Source: colah.github.io, http://blog.echen.me/2017/05/30/exploring-lstms

NOTE:

● De-coupling short-term and long-term memory avoids vanishing/exploding gradient (haphazard updation
of cell state in vanilla RNN was primary culprit)

● Methodical design of structure - no “mystery” as to why it works!

C(t-1)

h(t-1)

C(t)

h(t)

http://colah.github.io/
http://blog.echen.me/2017/05/30/exploring-lstms/

References
1. Hacker’s guide to NN: http://karpathy.github.io/neuralnets/

2. Interactive visualization: http://neuralnetworksanddeeplearning.com/chap4.html

3. LSTMs: colah.github.io

4. Quora answer:
https://www.quora.com/What-is-an-intuitive-explanation-of-LSTMs-and-GRUs/answer/Edwin-
Chen-1?share=b6d3b009&srid=Xfgu

5. http://blog.echen.me/2017/05/30/exploring-lstms/

http://karpathy.github.io/neuralnets/
http://neuralnetworksanddeeplearning.com/chap4.html
http://colah.github.io/
https://www.quora.com/What-is-an-intuitive-explanation-of-LSTMs-and-GRUs/answer/Edwin-Chen-1?share=b6d3b009&srid=Xfgu
https://www.quora.com/What-is-an-intuitive-explanation-of-LSTMs-and-GRUs/answer/Edwin-Chen-1?share=b6d3b009&srid=Xfgu
http://blog.echen.me/2017/05/30/exploring-lstms/

