“Intuition behind LSTM”

Vikram Voleti

IIT Hyderabad

Neural Networks

O Backfed Input Cell

Input Cell

4\ Noisy Input Cell

@) Hidden Cell

. Probablistic Hidden Cell
@ spiking Hidden Cell
. Output Cell

© watchinput Output Cell
. Recurrent Cell

. Memory Cell

. Different Memory Cell

Kernel

O Convolution or Pool

A mostly complete chart of

Neural Networks ...

©2016 Fjodor van Veen - asimovinstitute.org

Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF) / #:1;@.

oY
= : KR K

i
Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM) Gated Recurrent Unit (GRU)
- - : - : - -

Y9, Y, 9,9, oY,
) B ol SRR
/™" a"%"%\ Va""a" %\

Auto Encoder (AE) Variational AE (VAE) Denaising AE (DAE) Sparse AE (SAE)

]
- g‘é" #*ﬁi‘f

AV WAV

Neural Networks

Perceptron: linear combination -> non-linearity

Non-linearity “squashifies” the output - sigmoid: 0 to 1, tanh: -1 to 1, relu: 0 to inf

wx = 1*%(-200) + x_0%*(300) + x_1%(150) y = sigmoid{1*(-200) + x_0*(300) + x_1*{(150))

Sigmoid was chosen because: 1) “squashifies” between 0 & 1 for convenient binary classification
2) Can act as probability, to put a thresholded on
3) derivative is easy to compute

Source: https://github.com/voletiv/imyPythonNeuralNetwork

https://github.com/voletiv/myPythonNeuralNetwork

Neural Networks

Why non-linearity?
Linear combination will only give linear boundaries between classes. Non-linearities make

neural networks universal approximators.

Weighted output from hidden layer

> \h=-1.9

TN =02 ,

\ ’ Average deviation: 0.43

| Reset

> //h=-1.3

Source: http://neuralnetworksanddeeplearning.com/chap4.htm

http://neuralnetworksanddeeplearning.com/chap4.html

Vanishing Gradient Problem

Problem 1: Training neural networks via gradient descent using backpropagation incurs
vanishing/exploding gradient problem.

. Vanishing gradient (NN winter2: 1986-2006) |

(That’'s why ReLU is preferred.)

N e
Kev reason: : 1.0 D‘Ierlvatwel-s for actwatlon‘functlolns — sigmoid (2.5)
I — tanh
1 — relu
Fractional derivatives of : — ;gfjgg;;n
. ags 0.5}
non-linearities : (
: J
[
|
I

e e e e e e e e e e e e e e e e e e e —— —

Vanilla RNN

Problem 2: Fixed input size. (Sequence Learning?)

Recurrent Neural Networks

Solution:

[
A

ithub.io, Nature

Source: colah.

http://colah.github.io/

Vanilla RNN - Vanishing Gradient Problem

Problem 3: Training recurrent neural networks incurs vanishing/exploding gradient problem.

OEg
([}S';
()sl (}sz ()Q;
o "’l] a Ql o 89
—()= =(2)—()

[T T 1)

Lo £ L2 xr3 Ly

Back-Propagation Through Time (BPTT)

(Gradient gets worse with time)

Key reason: Haphazard updation of cell state

Hint: Related to eigenvalues of weight matrices

Source: http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/

http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/

LSTM

Problem: Vanishing/Exploding gradients in RNNs

Solution: Long Short-Term Memory (Hochreiter and Schmidhuber, 1997)

[link]
i ® &
- T\ 4 A\ 4 T\

Introducing: Long-term memory (cell state), short-term memory (working memory/cell output)

Source: colah.github.io

http://www.bioinf.jku.at/publications/older/2604.pdf
http://colah.github.io/

LSTM

3 Gates: (sigmoid units in the diagram)

-

P
&, >
1. Forget gate 1 ?
- £ A

w

2. Input gate

Q

3. Output gate

Source: colah.github.io, http://blog.echen.me/2017/05/30/exploring-Istms

http://colah.github.io/
http://blog.echen.me/2017/05/30/exploring-lstms/

LSTM - forget gate

1. Forget Gate:

e Remember only some parts of the long-term memory
and forget the rest. '
C(t-1) »P—x—-
e Decide what to remember based on current input, and
previous working memory.

h(t-1) =

Eg.: Remember that a character had died, forget the colour of their shirt.
Remember the currently called function, forget a returned value.

forget_gate(t) = (W, (x(t), h(t-1)))

remembered_cell_state(t) = forget_gate(t) .* C(t-1)

The forget_gate has a activation so as to act as a fraction on the previous long-term memory/cell state - hence
deciding what fraction to remember and what fraction to forget.

(W, includes bias)

Source: colah.github.io, http://blog.echen.me/2017/05/30/exploring-Istms

http://colah.github.io/
http://blog.echen.me/2017/05/30/exploring-lstms/

LSTM - input gate

2. Input Gate:

e Remember only some parts of the current input &

previous working memory. 4
C(t-1) »—
e Decide what to remember based on current input & D
previous working memory.
h(t-1) >
Eg.: The latest murder news, not an irrelevant character.
A new variable, not a comment.
input_gate(t) = (W.(x(t), h(t-1))) @
input_information(t) = tanh(W, (x(t), h(t-1)))
relevant_input_information(t) = input_gate(t) .* input_information(t)
The input_gate has a activation so as to act as a fraction on the input information - hence deciding what fraction

to consider and what fraction to let go.

The input_information has a tanh activation so as to squashify the information between -1 and 1.

Source: colah.github.io, http://blog.echen.me/2017/05/30/exploring-Istms

http://colah.github.io/
http://blog.echen.me/2017/05/30/exploring-lstms/

LSTM - update long-term memory

Update long-term memory:

e Add the relevant input information to the long-term

memory. / -
C(t-1) > ® —— C(t)
Eg.: Remember the latest news, don’t remember an irrelevant character. *
Remember a new variable, don’t remember a comment.
h(t-1) >+ h(t)

Q

C(t) = remembered_cell_state(t) + relevant_input_information(t)

Source: colah.github.io, http://blog.echen.me/2017/05/30/exploring-Istms

http://colah.github.io/
http://blog.echen.me/2017/05/30/exploring-lstms/

LSTM - output gate

3. Output Gate:

e Having saved relevant information into long-term
memory, retrieve some working memory.

C(t-1) P

e Decide what to retrieve based on current input & 5
previous working memory. il

h(t-1) = > hit)

Eg.: Retrieve the name of murderer, don’t retrieve the parents of victim.
Retrieve the updated variable, don'’t retrieve the nesting structure.

output_gate(t) = (W, (x(t), ht-1))) @
retrieved_memory(t) = tanh(C(t))

h(t) = output_gate(t) .* retrieved_memory(t)
The output_gate has a activation so as to act as a fraction on the retrieved information - hence deciding what
fraction to keep and what fraction to ignore.

The retrieved_memory has a tanh activation so as to squashify the retrieved information between -1 and 1.

Source: colah.github.io, http://blog.echen.me/2017/05/30/exploring-Istms

http://colah.github.io/
http://blog.echen.me/2017/05/30/exploring-lstms/

LSTM

- B
C(t-1) =p—X) @ p C(t)
Ganh>
T r"$ ¥
(0] (0] tanh (0]
h(t-1) .;CILI, Ll_| _l_‘ 5J)_; h(t)

SUMMARY: @

Using (x(t), h(t-1)), i.e. current input and previous working memory,

e forget unimportant long-term memory,

e compute relevant input information, and add it to the long-term memory,

e retrieve relevant working memory from long-term memory.

Source: colah.github.io, http://blog.echen.me/2017/05/30/exploring-Istms

http://colah.github.io/
http://blog.echen.me/2017/05/30/exploring-lstms/

Variant - Peephole

e Same as LSTM, except use long-term memory as well for all decisions:
o (x(1), h(t-1), C(t-1)) for forget and input gates,
o (x(1), h(t-1), C(t)) for output gate.

Source: colah.github.io, http://blog.echen.me/2017/05/30/exploring-Istms

http://colah.github.io/
http://blog.echen.me/2017/05/30/exploring-lstms/

LSTM

- B
C(t-1) =p—X) @ p C(t)
Ganh>
T r"$ ¥
(0] (0] tanh (0]
h(t-1) .;CILI, Ll_| _l_‘ 5J)_; h(t)

NOTE:

e De-coupling short-term and long-term memory avoids vanishing/exploding gradient (haphazard updation
of cell state in vanilla RNN was primary culprit)

e Methodical design of structure - no “mystery” as to why it works!

Source: colah.github.io, http://blog.echen.me/2017/05/30/exploring-Istms

http://colah.github.io/
http://blog.echen.me/2017/05/30/exploring-lstms/

e dh =

References

Hacker’s guide to NN: http://karpathy.github.io/neuralnets/

Interactive visualization: http://neuralnetworksanddeeplearning.com/chap4.html

LSTMs: colah.github.io

Quora answer:
https://www.quora.com/What-is-an-intuitive-explanation-of-LSTMs-and-GRUs/answer/Edwin-

Chen-17?share=b6d3b009&srid=Xfqu

http://blog.echen.me/2017/05/30/exploring-Istms/

http://karpathy.github.io/neuralnets/
http://neuralnetworksanddeeplearning.com/chap4.html
http://colah.github.io/
https://www.quora.com/What-is-an-intuitive-explanation-of-LSTMs-and-GRUs/answer/Edwin-Chen-1?share=b6d3b009&srid=Xfgu
https://www.quora.com/What-is-an-intuitive-explanation-of-LSTMs-and-GRUs/answer/Edwin-Chen-1?share=b6d3b009&srid=Xfgu
http://blog.echen.me/2017/05/30/exploring-lstms/

