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Neural Networks

Perceptron: linear combination -> non-linearity

Non-linearity “squashifies” the output - sigmoid: 0 to 1, tanh: -1 to 1, relu: 0 to inf

wx = 1*%(-200) + x_0%*(300) + x_1%(150) y = sigmoid{1*(-200) + x_0*(300) + x_1*{(150))

Sigmoid was chosen because: 1) “squashifies” between 0 & 1 for convenient binary classification
2) Can act as probability, to put a thresholded on
3) derivative is easy to compute

Source: https://github.com/voletiv/imyPythonNeuralNetwork



https://github.com/voletiv/myPythonNeuralNetwork

Neural Networks

Why non-linearity?
Linear combination will only give linear boundaries between classes. Non-linearities make

neural networks universal approximators.

Weighted output from hidden layer

> \h=-1.9

TN =02 ,

\ ’ Average deviation: 0.43

| Reset

> //h=-1.3

Source: http://neuralnetworksanddeeplearning.com/chap4.htm



http://neuralnetworksanddeeplearning.com/chap4.html

Vanishing Gradient Problem

Problem 1: Training neural networks via gradient descent using backpropagation incurs
vanishing/exploding gradient problem.

. Vanishing gradient (NN winter2: 1986-2006) |

(That’'s why ReLU is preferred.)
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Vanilla RNN

Problem 2: Fixed input size. (Sequence Learning?)

Recurrent Neural Networks

Solution:

[
A

ithub.io, Nature

Source: colah.


http://colah.github.io/

Vanilla RNN - Vanishing Gradient Problem

Problem 3: Training recurrent neural networks incurs vanishing/exploding gradient problem.
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Back-Propagation Through Time (BPTT)

(Gradient gets worse with time)

Key reason: Haphazard updation of cell state

Hint: Related to eigenvalues of weight matrices

Source: http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/



http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/

LSTM

Problem: Vanishing/Exploding gradients in RNNs

Solution: Long Short-Term Memory (Hochreiter and Schmidhuber, 1997)
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Introducing: Long-term memory (cell state), short-term memory (working memory/cell output)

Source: colah.github.io


http://www.bioinf.jku.at/publications/older/2604.pdf
http://colah.github.io/

LSTM

3 Gates: (sigmoid units in the diagram)
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Source: colah.github.io, http://blog.echen.me/2017/05/30/exploring-Istms



http://colah.github.io/
http://blog.echen.me/2017/05/30/exploring-lstms/

LSTM - forget gate

1. Forget Gate:

e Remember only some parts of the long-term memory
and forget the rest. '
C(t-1) »P—x—-
e Decide what to remember based on current input, and
previous working memory.

h(t-1) =

Eg.: Remember that a character had died, forget the colour of their shirt.
Remember the currently called function, forget a returned value.

forget_gate(t) = (W, (x(t), h(t-1) ) )

remembered_cell_state(t) = forget_gate(t) .* C(t-1)

The forget_gate has a activation so as to act as a fraction on the previous long-term memory/cell state - hence
deciding what fraction to remember and what fraction to forget.

(W, includes bias)

Source: colah.github.io, http://blog.echen.me/2017/05/30/exploring-Istms



http://colah.github.io/
http://blog.echen.me/2017/05/30/exploring-lstms/

LSTM - input gate

2. Input Gate:

e Remember only some parts of the current input &

previous working memory. 4
C(t-1) »—
e Decide what to remember based on current input & D
previous working memory.
h(t-1) >
Eg.: The latest murder news, not an irrelevant character.
A new variable, not a comment.
input_gate(t) = (W.(x(t), h(t-1))) @
input_information(t) = tanh( W, ( x(t), h(t-1) ) )
relevant_input_information(t) = input_gate(t) .* input_information(t)
The input_gate has a activation so as to act as a fraction on the input information - hence deciding what fraction

to consider and what fraction to let go.

The input_information has a tanh activation so as to squashify the information between -1 and 1.

Source: colah.github.io, http://blog.echen.me/2017/05/30/exploring-Istms



http://colah.github.io/
http://blog.echen.me/2017/05/30/exploring-lstms/

LSTM - update long-term memory

Update long-term memory:

e Add the relevant input information to the long-term

memory. / -
C(t-1) > ® —— C(t)
Eg.: Remember the latest news, don’t remember an irrelevant character. *
Remember a new variable, don’t remember a comment.
h(t-1) >+ h(t)

Q

C(t) = remembered_cell_state(t) + relevant_input_information(t)

Source: colah.github.io, http://blog.echen.me/2017/05/30/exploring-Istms



http://colah.github.io/
http://blog.echen.me/2017/05/30/exploring-lstms/

LSTM - output gate

3. Output Gate:

e Having saved relevant information into long-term
memory, retrieve some working memory.

C(t-1) P

e Decide what to retrieve based on current input & 5
previous working memory. il

h(t-1) = > hit)

Eg.: Retrieve the name of murderer, don’t retrieve the parents of victim.
Retrieve the updated variable, don'’t retrieve the nesting structure.

output_gate(t) = (W, (x(t), ht-1))) @
retrieved_memory(t) = tanh( C(t) )

h(t) = output_gate(t) .* retrieved_memory(t)
The output_gate has a activation so as to act as a fraction on the retrieved information - hence deciding what
fraction to keep and what fraction to ignore.

The retrieved_memory has a tanh activation so as to squashify the retrieved information between -1 and 1.

Source: colah.github.io, http://blog.echen.me/2017/05/30/exploring-Istms



http://colah.github.io/
http://blog.echen.me/2017/05/30/exploring-lstms/

LSTM
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SUMMARY: @

Using ( x(t), h(t-1) ), i.e. current input and previous working memory,

e forget unimportant long-term memory,

e compute relevant input information, and add it to the long-term memory,

e retrieve relevant working memory from long-term memory.

Source: colah.github.io, http://blog.echen.me/2017/05/30/exploring-Istms



http://colah.github.io/
http://blog.echen.me/2017/05/30/exploring-lstms/

Variant - Peephole

e Same as LSTM, except use long-term memory as well for all decisions:
o (x(1), h(t-1), C(t-1) ) for forget and input gates,
o (x(1), h(t-1), C(t) ) for output gate.

Source: colah.github.io, http://blog.echen.me/2017/05/30/exploring-Istms
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http://blog.echen.me/2017/05/30/exploring-lstms/
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NOTE:

e De-coupling short-term and long-term memory avoids vanishing/exploding gradient (haphazard updation
of cell state in vanilla RNN was primary culprit)

e Methodical design of structure - no “mystery” as to why it works!

Source: colah.github.io, http://blog.echen.me/2017/05/30/exploring-Istms



http://colah.github.io/
http://blog.echen.me/2017/05/30/exploring-lstms/
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