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1. Contributions

Vlsualizations have potential to answer-
- why are we able to minimize highly non-convex neural loss functions?
- And why do the resulting minima generalize”?

Paper contributions:
- Reveal faults in other visualization methods

- Present simple visualization method based on “Filter Normalization”

- Observe that deeper architectures transit loss landscapes from convex to chaotic - coincides with decrease in

generalization error
- Show that skip connections provide flat minima and prevent transit to chaos

- Visualize optimization trajectories
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2. Past ways to visualize
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as seen in Goodfellow et al.:
https://arxiv.org/abs/1412.6544
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Pros: used to study
- “sharpness” and “flatness” of different minima,
- dependence of sharpness on batch-size,
- different minima and the “peaks” between them,
- different minima obtained via different optimizers

0.0 0.5 1.0 15 20

- difficult to visualize non-convexities,
- does not consider batch-norm or invariance
symmetries in the network
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2. Past ways to visualize

2D plot:

Choose centre point \theta-star, plot fla, B) = L(0* + ad + Bn)
$f(\alpha, \beta)$ in random directions
\delta and \eta

Pros: used to

- explore trajectories of different minimization Cons:
methods - capture low-res plots of small regions,

- show different optimization algorithms find - Non-convexities not captured
different local minima
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3. Proposal: Filter-Wise Normalization

Problem: Scale Invariance

- Multiply one Rel.U output by 10 and divide at next layer by 10, output remains unchanged!

- Hence, comparisons of networks/optimizers might not be correct

Solution: Filter-wise Normalization

- Generate random direction 4 from a Gaussian, then normalize using weights:

d. .
2,7 Hd'L]H H %JH
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4. “Sharp” vs “Flat” minima

e Unnormalized plots show some correlation
between small batch size and “sharp” minima w/o
weight decay, and vice versa with

e  But, can be correlated to weight values:
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4. “Sharp” vs “Flat” minima

Filter-Wise Normalized Plots using random filter-normalized direction:
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Figure 4: The shape of minima obtained using different optimization algorithms, batch size and

weight decay. The title of each subfigure contains the optimizer, batch size, and test error. The first
row has no weight decay and the second row uses weight decay Se-4.

Conclusion: smaller batch-size => “flatter” minima, larger batch-size => “sharper” minima
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4. “Sharp” vs “Flat” minima

Filter-Wise Normalized Plots using 2 random filter-normalized directions:
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Figure 5: 2D visualization of solutions obtained by SGD with small-batch and large-batch. Similar to
Figure 4, the first row uses zero weight decay and the second row sets weight decay to Se-4.

Conclusion: the weights obtained with small batch size and non-zero weight decay have wider contours
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4. “Sharp” vs “Flat” minima

Table 1: Test errors of VGG-9 on CIFAR-10 with different optimization algorithms and hyper-

parameters.
SGD Adam
bs=128 bs=8192 bs=128 bs=8192
WD =0 7.37 11.07 7.44 1091
WD = 5e-4 6.00 10.19 7.80 9.52

Conclusion: sharpness correlates well with generalization error
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5. Minima of different architectures

Resnets
trained on CIFAR-10:

Resnets without skip connections
trained on CIFAR-10:

Wider Resnets
trained on ImageNet:
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Figure 7: 2D visualization of the solutions of different networks.
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5. Minima of different architectures

DEPTH:
Resnets
trained on CIFAR-10:
(a) ResNet-20 v) ResNet-56, 5.89 (c) ResNet-110, 5.79%
Resnets without skip connections
trained on CIFAR-10: - - -
Conclusion: depth makes convex->chaotic, | -~
extremely large in SOme direCtions, | ™q) ReNec 20-noshor. 8.18%  (¢) ResNet-36-noshor, 1331% () ReaNet-110-noshert, 16.44%
sharp minima, ill-conditioned with
eccentricity
Wider Resnets
trained on ImageNet:
(2) ResNet-18, 4.84% " (h) ResNet-34, 4.73% (i) ResNet-50, 4.55%

Figure 7: 2D visualization of the solutions of different networks.
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5. Minima of different architectures

SKIP CONNECTIONS: .
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Figure 7: 2D visualization of the solutions of different networks.
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5. Minima of different architectures

(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The vertical axis is
logarithmic to show dynamic range. The proposed filter normalization scheme is used to enable
comparisons of sharpness/flatness between the two figures.

Conclusion: skip connections prevent transition to chaos with depth

Hmm, wonder how DenseNet's loss landscape is..
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5. Minima of different architectures

(a) 110 layers, no skip connections (b) DenseNet, 121 layers

Figure 6: (left) The loss surfaces of ResNet-110-noshort, without skip connections. (right) DenseNet,
the current state-of-the-art network for CIFAR-10.

Conclusion: skip connections prevent transition to chaos with depth
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5. Minima of different architectures

WIDTH:
Wider Resnets
trained on ImageNet: -
Conclusion: wider (more filters per layer) \ v// \,
networks have flatier minima and more U@ ReNells A8 () ReNewdd 4738 () ReNeus0.455%
convexity

Figure 7: 2D visualization of the solutions of different networks.
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5. Minima of different architectures

WIDTH: |
—Z— "\
=1,5.89%
(e) k=1,13.31% ) k=2,10.26% (g) £k =4,9.69% (h) £ =8, 8.70%
Figure 8: Wide-ResNet-56 (WRN-56) on CIFAR-10 both with shortcut connections (top) and without
(bottom). The label £ = 2 means twice as many filters per layer, £ = 4 means 4 times, etc. Test error
is reported below each figure.
Conclusion: wider (more filters per layer) networks have flatter minima and more convexity
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6. Visualizing optimization paths

Failed attempts:

0.0020 1.00 , 1.00 le-3
0.0015 0.75 ; 0.75
0.0010 0.50 050
0.0005 0.25 0.25
0.0000 0.00 - I 0.00 k»f"‘[\'\”/
-0.0005 -0.25 5 “ —0.25 ﬂ;
-0.0010 ~0.50 A1 | —0.50
-0.0015 -0.75 1 | ‘ E —0.75
l /’// ,
-0.0020 -1.00 == ! ~1.00 L
-0.0010 -0.0005 0.0000 0.0005 0.0010 0.0015 0.0020 -=0.50 =025 0.00 0.25 0.50 0.75 1.00 1.25 1.50 -0.50 =025 0.00 0.25 0.50 0.75 1.00 1.25 1.50
(a) Two random directions (b) Random direction for y-axis (c) Enlarged version (b)

Figure 9: Ineffective visualizations of optimizer trajectories. These visualizations suffer from the
orthogonality of random directions in high dimensions.

Conclusion: optimization path is highly low-dimensional! Can’t pick random directions.

Mila, University of Montreal VIKRAM VOLETI | PhD, Mila

18/20



6. Visualizing optimization paths

PCA: Perform PCA on matrix M, and choose the best 2 directions:

M =10g —0pn;--+ ;0n_1 — 0] (\theta_i is the weights at the ith epoch)

2nd PCA component: 6.33 %
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Figure 10: Projected learning trajectories use normalized PCA directions for VGG-9. The left plot in
each subfigure uses batch size 128, and the right one uses batch size 8192.
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7. Reviewer comments

e Proposed method is too incremental, not much novelty
e Feels preliminary, has potential

e  Possibly only valid for ReLU, didn’t compare for other activations

https://openreview.net/forum?id=HkmaTz-0W

Mila, University of Montreal VIKRAM VOLETI | PhD, Mila 20/20


https://openreview.net/forum?id=HkmaTz-0W

Thank you.
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