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Ordinary Differential Equations (ODEs)

1st order Ordinary Differential Equation:
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Ordinary Differential Equations (ODEs)

Initial value problem:

Many physical processes follow this template!
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Ordinary Differential Equations (ODEs)

Initial value problem:

Solution:
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Ordinary Differential Equations (ODEs)

Initial value problem:

Solution:

What if this cannot be 

analytically integrated?
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Approximations to                             

i.e. Numerical Integration :

● Euler method

● Runge-Kutta methods

● ...

Ordinary Differential Equations (ODEs)

Initial value problem:

Solution:
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Ordinary Differential Equations (ODEs)

1st-order Runge-Kutta / Euler’s method:

Step size

Update using derivative  

Initial value problem:

Solution:

https://guide.freecodecamp.org/mathematics/differential-equations/eulers-method/
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Ordinary Differential Equations (ODEs)

1st-order Runge-Kutta / Euler’s method:

Initial value problem:

Solution:
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Ordinary Differential Equations (ODEs)

https://lpsa.swarthmore.edu/NumInt/NumIntFirst.html

Initial value problem:

Solution:

1st-order Runge-Kutta / Euler’s method:

Step size matters!
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Ordinary Differential Equations (ODEs)

Initial value problem:

Solution:

Default ODE solver used in MATLAB:
https://blogs.mathworks.com/loren/2015/09/23/o
de-solver-selection-in-matlab/

4th-order Runge-Kutta method:
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Ordinary Differential Equations (ODEs)

Initial value problem:

Solution:

Any ODE solver of our choice!

Differential

Initial value

Initial time

Final time
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Ordinary Differential Equations (ODEs)

Initial value problem:

Solution:

Fundamental Theorem of ODEs

1. The solution curves for this differential equation completely fill the plane, and

2. Solution curves for different solutions do not intersect.

 https://openreview.net/pdf?id=B1e9Y2NYvShttp://faculty.bard.edu/belk/math213/InitialValueProblems.pdf
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1. Ordinary Differential Equations (ODEs)

○ Initial Value Problems

○ Numerical Integration methods

○ Fundamental theorem of ODEs

2. Neural ODEs (Chen et al., NeurIPS 2018)

○ Adjoint method

○ Applications

3. Later research
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Neural ODEs (Chen et al., NeurIPS 2018)

Initial value problem:

Solution:

  is a neural network!

https://arxiv.org/pdf/1806.07366.pdf

Paradigm shift: whereas earlier f was pre-defined/hand-designed according to the domain,
here we would like to estimate an f that suits our objective.
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Neural ODEs (Chen et al., 2018)

https://arxiv.org/pdf/1806.07366.pdf

Euler discretization

ODEs
Residual 

networks

Skip connection

Vector 
notation

https://arxiv.org/pdf/1512.03385.pdf
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Neural ODEs (Chen et al., 2018)

https://arxiv.org/pdf/1806.07366.pdf

ODEs
Residual 

networks

Update    to reduce     .Update    to reduce     .

Skip connection

Stacked ResBlocks

Euler discretization

Forward propagation:

How to compute this?

https://arxiv.org/pdf/1512.03385.pdf
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Neural ODEs (Chen et al., 2018)

https://arxiv.org/pdf/1806.07366.pdf

ODEs

High memory cost -

need to save all activations of all 

iterations of ODESolve.

Can we do better?

Yes.

Update    to reduce     .

Euler discretization

Forward propagation:
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Neural ODEs (Chen et al., 2018)

https://arxiv.org/pdf/1806.07366.pdf

Adjoint method (Pontryagin et al., 1962)
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Forward propagation:
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Neural ODEs (Chen et al., 2018)

https://arxiv.org/pdf/1806.07366.pdf Initial value is 0

Adjoint method (Pontryagin et al., 1962)

Forward propagation:

Back-propagation:
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Neural ODEs (Chen et al., 2018)

https://arxiv.org/pdf/1806.07366.pdf

Forward propagation:

Back-propagation:

Update    to reduce     .
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Neural ODEs (Chen et al., 2018)
https://arxiv.org/pdf/1806.07366.pdf

Neural ODE

 https://openreview.net/pdf?id=B1e9Y2NYvS

Neural ODEs describe a homeomorphism (flow).

● They preserve dimensionality.

● They form non-intersecting trajectories.
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Neural ODEs (Chen et al., 2018)
https://arxiv.org/pdf/1806.07366.pdf

Neural ODE

Neural ODEs are reversible models!
Just integrate forward/backward in time.

Neural ODE

21
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Supervised Learning

Neural ODEs (Chen et al., 2018)
https://arxiv.org/pdf/1806.07366.pdf

Applications

Neural ODE

L
i
n
e
a
r

~ Replacement for ResNets

ODE-Net:

Generative Latent ModelsContinuous Normalizing Flows

22

Test error # Params Memory Time

1-layer MLP 1.60% 0.24 M - -

ResNet 0.41% 0.60 M

RK-Net 0.47% 0.22 M

ODE-Net 0.42% 0.22 M

Table 1: Performance on MNIST.
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Continuous Normalizing FlowsSupervised Learning

Neural ODEs (Chen et al., 2018)
https://arxiv.org/pdf/1806.07366.pdf

Applications

Noise distributionTarget distribution

(such as
real image manifold)

Generative Latent Models

Sample from
noise distribution
(such as Gaussian)

Sample from 
target distribution
(such as an image)
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Continuous Normalizing FlowsSupervised Learning

Neural ODEs (Chen et al., 2018)
https://arxiv.org/pdf/1806.07366.pdf

Applications

Neural ODE

Likelihood estimation
using Change of Variables formula

Generative Latent Models

24

Noise distributionTarget distribution

Train f to maximize the likelihood of the samples from target distribution
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Continuous Normalizing FlowsSupervised Learning

Neural ODEs (Chen et al., 2018)
https://arxiv.org/pdf/1806.07366.pdf

Applications

Neural ODE

Likelihood estimation
using Change of Variables formula

Generative Latent Models

25

Noise distributionTarget distribution

Generate samples

Sample from the noise distribution, transform it into a sample from the target distribution
using the trained Neural ODE.
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Supervised Learning

Neural ODEs (Chen et al., 2018)

Generative Latent Models

https://arxiv.org/pdf/1806.07366.pdf

Applications

Continuous Normalizing Flows

26
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Supervised Learning

Neural ODEs (Chen et al., 2018)

Generative Latent Models

https://arxiv.org/pdf/1806.07366.pdf

Applications

Continuous Normalizing Flows

Encode the 
observed data
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Supervised Learning

Neural ODEs (Chen et al., 2018)

Generative Latent Models

https://arxiv.org/pdf/1806.07366.pdf

Applications

Continuous Normalizing Flows

Encode into a latent distribution (such 
as Gaussian)
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Supervised Learning

Neural ODEs (Chen et al., 2018)

Generative Latent Models

https://arxiv.org/pdf/1806.07366.pdf

Applications

Continuous Normalizing Flows

Sample from the 
latent distribution
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Supervised Learning

Neural ODEs (Chen et al., 2018)

Generative Latent Models

https://arxiv.org/pdf/1806.07366.pdf

Applications

Continuous Normalizing Flows

Use the sample as
initial value to a Neural ODE

26

https://voletiv.github.io
https://mila.quebec/
https://arxiv.org/pdf/1806.07366.pdf


Vikram Voleti A brief tutorial on Neural ODEs / 41

Supervised Learning

Neural ODEs (Chen et al., 2018)

Generative Latent Models

https://arxiv.org/pdf/1806.07366.pdf

Applications

Continuous Normalizing Flows

Solve the Neural ODE for
latent points in later time steps

26

https://voletiv.github.io
https://mila.quebec/
https://arxiv.org/pdf/1806.07366.pdf


Vikram Voleti A brief tutorial on Neural ODEs / 41

Supervised Learning

Neural ODEs (Chen et al., 2018)

Generative Latent Models

https://arxiv.org/pdf/1806.07366.pdf

Applications

Continuous Normalizing Flows

Compute loss

Decode the 
latent points

26

https://voletiv.github.io
https://mila.quebec/
https://arxiv.org/pdf/1806.07366.pdf


Vikram Voleti A brief tutorial on Neural ODEs / 41

Supervised Learning

Neural ODEs (Chen et al., 2018)

Generative Latent Models

https://arxiv.org/pdf/1806.07366.pdf

Applications

Continuous Normalizing Flows

Future generation!

Solve the Neural ODE for
latent points in future time steps

Decode the 
latent points
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1. Ordinary Differential Equations (ODEs)

○ Initial Value Problems

○ Numerical Integration methods

○ Fundamental theorem of ODEs

2. Neural ODEs (Chen et al., NeurIPS 2018)

○ Adjoint method

○ Applications

3. Later research
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Later research

FFJORD: Free-form Continuous Dynamics For Scalable Reversible Generative 
Models (Grathwohl et al., ICLR 2019)

https://arxiv.org/pdf/1810.01367.pdf

● Essentially a better Continuous Normalizing Flow.

● Makes a better estimate for the log determinant term.

● “We demonstrate our approach on high-dimensional 

density estimation, image generation, and variational 

inference, achieving the state-of-the-art among exact 

likelihood methods with efficient sampling.”
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Later research

Augmented Neural ODEs (Dupont et al., NeurIPS 2019)

● Shows that Neural ODEs cannot model non-homeomorphisms (non-flows)

● Augments the state with additional dimensions to cover non-homeomorphisms

● Performs ablation study on toy examples and image classification

https://arxiv.org/pdf/1904.01681.pdf
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Later research

ANODEV2: A Coupled Neural ODE Evolution Framework
(Zhang et al., NeurIPS 2019)

● Network weights are also a function of time

● Separate “weight network” generates the weights of the function network 

at a given time

https://arxiv.org/pdf/1906.04596.pdf
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Later research

Latent ODEs for Irregularly-Sampled Time Series
(Rubanova et al., NeurIPS 2019)

https://arxiv.org/pdf/1907.03907.pdf

● Improves the generative latent variable framework for irregularly-sampled time series

● Essentially uses an ODE in the encoder where samples are missing

● Shows results on toy data, MuJoCo, PhysioNet
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Later research

Simple Video Generation using Neural ODEs
(David Kanaa*, Vikram Voleti*, Samira Kahou, Christopher Pal; NeurIPS 2019 Workshop)

● Video generation as a generative latent 

variable model using Neural ODEs

https://sites.google.com/view/neurips2019lire/accepted-papers?authuser=0
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Later research

ODE2VAE: Deep generative second order ODEs with Bayesian neural 
networks (Yildiz et al., NeurIPS 2019)

● Uses 2nd-order Neural ODE

● Uses a Bayesian Neural Network

● Showed results modelling video generation 

as a generative latent variable model using 

(2nd-order Bayesian) Neural ODE

https://papers.nips.cc/paper/9497-ode2vae-deep-generative-second-order-odes-with-bayesian-neural-networks.pdf
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Later research

Neural Jump Stochastic Differential Equations (Jia et al., NeurIPS 2019)

● Models continuous + discrete dynamics of 

a hybrid system

● Discontinuities are modelled as stochastic 

events

● Show results on real-world and synthetic 

point process datasets

34
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Later research

Neural SDE: Stabilizing Neural ODE Networks with Stochastic Noise 
(Liu et al., 2019)

● Random noise injection into Neural ODEs

● Adds a diffusion term into the Neural ODE 

formulation, denoting a continuous time 

stochastic process

● Makes a case for robustness

35
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Later research

On Robustness of Neural Ordinary Differential Equations
(Yan et al., ICLR 2020)

● Ablation study on adversarial attacks on ODE-Nets

● Introduces new regularization term to improve 

robustness

https://arxiv.org/pdf/1910.05513.pdf, https://openreview.net/pdf?id=B1e9Y2NYvS

36

https://voletiv.github.io
https://mila.quebec/
https://arxiv.org/pdf/1910.05513.pdf
https://openreview.net/pdf?id=B1e9Y2NYvS


Vikram Voleti A brief tutorial on Neural ODEs / 41

Later research

Approximation Capabilities of Neural ODEs and Invertible Residual 
Networks (Zhang et al., ICML 2020)

● Provides guarantees on 

modelling capability of 

homeomorphisms v/s the 

capacity of the Neural ODE

https://arxiv.org/pdf/1907.12998.pdf
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Later research

How to Train Your Neural ODE : the world of Jacobian and kinetic 
regularization (Finlay et al., ICML 2020)

● Makes a link between the flow in Neural 

ODEs and optimal transport

● Introduces two new regularization terms to 

constrain flows to straight lines

● Speeds up training of Neural ODEs

https://arxiv.org/pdf/2002.02798.pdf
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Later research

Scalable Gradients for Stochastic Differential Equations
(Li et al., AISTATS 2020)

● Generalizes the adjoint method to stochastic dynamics defined by SDEs : 

“stochastic adjoint sensitivity method.”

● PyTorch Implementation of Differentiable SDE Solvers: 

https://github.com/google-research/torchsde

https://arxiv.org/pdf/2001.01328.pdf
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Later research

“Bullshit that I and others have said about Neural ODEs”
(David Duvenaud, ML Retrospectives Workshop @ NeurIPS 2019)

● Summarizes what went right and wrong in the 

publication of the Neural ODEs paper

https://www.youtube.com/watch?v=YZ-_E7A3V2w
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Additional References

● http://faculty.bard.edu/belk/math213/InitialValueProblems.pdf

● ODE Solvers: https://math.temple.edu/~queisser/assets/files/Talk3.pdf

● Textbook : https://users.math.msu.edu/users/gnagy/teaching/ode.pdf

● https://lpsa.swarthmore.edu/NumInt/NumIntFirst.html

● Excellent blog post on ODE solvers: https://blogs.mathworks.com/loren/2015/09/23/ode-solver-selection-in-matlab/

● Autodiff tutorial: 
http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/readings/L06%20Automatic%20Differentiation.pdf

● Course on Neural Networks & Deep Learning by Roger Grosse & Jimmy Ba, University of Toronto - 
http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/

● Official Neural ODE code torchdiffeq : https://github.com/rtqichen/torchdiffeq

● DiffEqML’s torchdyn : https://github.com/DiffEqML/torchdyn

● TorchSDE : https://github.com/google-research/torchsde
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