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Ordinary Differential Equations (ODEs)

Initial value problem:

Solution:
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Ordinary Differential Equations (ODEs)

Initial value problem:

Solution:

What if this cannot be 

analytically integrated?
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Approximations to                             

i.e. Numerical Integration :

● Euler method

● Runge-Kutta methods

● ...

Ordinary Differential Equations (ODEs)

Initial value problem:

Solution:
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Ordinary Differential Equations (ODEs)

1st-order Runge-Kutta / Euler’s method:

Step size

Update using derivative  

Initial value problem:

Solution:

https://guide.freecodecamp.org/mathematics/differential-equations/eulers-method/
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Ordinary Differential Equations (ODEs)

1st-order Runge-Kutta / Euler’s method:

Initial value problem:

Solution:
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Ordinary Differential Equations (ODEs)

https://lpsa.swarthmore.edu/NumInt/NumIntFirst.html

Initial value problem:

Solution:

1st-order Runge-Kutta / Euler’s method:

Step size matters!
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Ordinary Differential Equations (ODEs)

Initial value problem:

Solution:

Default ODE solver used in MATLAB:
https://blogs.mathworks.com/loren/2015/09/23/o
de-solver-selection-in-matlab/

4th-order Runge-Kutta method:
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Ordinary Differential Equations (ODEs)

Initial value problem:

Solution:

Any ODE solver of our choice!

Differential

Initial value

Initial time

Final time
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Ordinary Differential Equations (ODEs)

Initial value problem:

Solution:

Fundamental Theorem of ODEs

1. The solution curves for this differential equation completely fill the plane, and

2. Solution curves for different solutions do not intersect.

 https://openreview.net/pdf?id=B1e9Y2NYvShttp://faculty.bard.edu/belk/math213/InitialValueProblems.pdf
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1. Ordinary Differential Equations

2. Neural ODEs

3. Continuous Normalizing Flows
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Neural ODEs (Chen et al., NeurIPS 2018)

Initial value problem:

Solution:

  is a neural network!

https://arxiv.org/pdf/1806.07366.pdf

Paradigm shift: whereas earlier f was pre-defined/hand-designed according to the domain,
here we would like to estimate an f that suits our objective.
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Neural ODEs (Chen et al., 2018)

https://arxiv.org/pdf/1806.07366.pdf

Euler discretization

ODEs
Residual 

networks

Skip connection

Vector 
notation

https://arxiv.org/pdf/1512.03385.pdf
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Neural ODEs (Chen et al., 2018)

https://arxiv.org/pdf/1806.07366.pdf

ODEs
Residual 

networks

Update    to reduce     .Update    to reduce     .

Skip connection

Stacked ResBlocks

Euler discretization

Forward propagation:

How to compute this?

https://arxiv.org/pdf/1512.03385.pdf
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Neural ODEs (Chen et al., 2018)

https://arxiv.org/pdf/1806.07366.pdf

ODEs

High memory cost -

need to save all activations of all 

iterations of ODESolve.

Can we do better?

Yes.

Update    to reduce     .

Euler discretization

Forward propagation:
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Neural ODEs (Chen et al., 2018)

https://arxiv.org/pdf/1806.07366.pdf

Adjoint method (Pontryagin et al., 1962)
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Forward propagation:

? ?
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Neural ODEs (Chen et al., 2018)

https://arxiv.org/pdf/1806.07366.pdf Initial value is 0

Adjoint method (Pontryagin et al., 1962)

Forward propagation:

Back-propagation:
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Neural ODEs (Chen et al., 2018)

https://arxiv.org/pdf/1806.07366.pdf

Forward propagation:

Back-propagation:

Update    to reduce     .
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Neural ODEs (Chen et al., 2018)
https://arxiv.org/pdf/1806.07366.pdf

Neural ODE

 https://openreview.net/pdf?id=B1e9Y2NYvS

Neural ODEs describe a homeomorphism (flow).

● They preserve dimensionality.

● They form non-intersecting trajectories.
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Neural ODEs (Chen et al., 2018)
https://arxiv.org/pdf/1806.07366.pdf

Neural ODE

Neural ODEs are reversible models!
Just integrate forward/backward in time.

Neural ODE

21

https://voletiv.github.io
https://mila.quebec/
https://arxiv.org/pdf/1806.07366.pdf


Vikram Voleti Continuous Normalizing Flows 22

1. Ordinary Differential Equations

2. Neural ODEs

3. Continuous Normalizing Flows
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Continuous Normalizing Flows

(such as
real image manifold)

Noise distribution

Sample from
noise distribution
(such as Gaussian)

Target distribution

Sample from 
target distribution
(such as an image)

Neural ODE

https://arxiv.org/abs/1810.01367

Likelihood estimation
using Change of Variables formula

Train f to maximize the likelihood of the samples from target distribution
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Continuous Normalizing Flows

(such as
real image manifold)

Noise distribution

Sample from
noise distribution
(such as Gaussian)

Target distribution

Sample from 
target distribution
(such as an image)

Neural ODE

https://arxiv.org/abs/1810.01367

Likelihood estimation
using Change of Variables formula

Sample from the noise distribution, transform it into a sample from the target distribution
using the trained Neural ODE.

Generate samples

“FFJORD”
(Free-Form Jacobian Of Reversible Dynamics)
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Continuous Normalizing Flows

Initial value:
Change of variables:

Instantaneous change of variables:

FFJORD (ICLR 2019)

https://arxiv.org/abs/1810.01367

Hutchinson’s trace estimator:
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Continuous Normalizing Flows

Initial value:

Change of variables:

Instantaneous change of variables:

FFJORD (ICLR 2019)

https://arxiv.org/abs/1810.01367 https://arxiv.org/abs/2002.02798

How to Train your 
Neural ODE (ICML 2020)

CIFAR10 ImageNet64

BPD Time BPD Time

3.40 ≥5 days - -

Introduces 2 regularization terms:
  1) Kinetic energy of flow
  2) Jacobian norm of flow

CIFAR10 ImageNet64

BPD Time BPD Time

3.38 31.84 3.83 64.1

Introduces temporal regularization:

CIFAR10 ImageNet64

BPD Time BPD Time

3.39 22.24 - -

STEER

https://arxiv.org/abs/2006.10711
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3. Image Generation

https://arxiv.org/abs/2002.02798

How to Train your 
Neural ODE (ICML 2020)

CIFAR10 ImageNet64

BPD Time BPD Time

3.40 ≥5 days - -

CIFAR10 ImageNet64

BPD Time BPD Time

3.38 31.84 3.83 64.1

CIFAR10 ImageNet64

BPD Time BPD Time

3.39 22.24 - -

STEER

https://arxiv.org/abs/2006.10711

FFJORD (ICLR 2019)

https://arxiv.org/abs/1810.01367
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Thank you!

voletiv.github.io
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