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ODE-GAN

Contributions

e We frame GAN training as solving ODEs.

e Wedesign aregulariser on the gradients to improve numerical integration of the
ODE.

e We show that higher-order ODE solvers lead to better convergence for GANSs.

e Our algorithm (ODE-GAN) can train GANs to competitive levels without any

adaptive optimiser (e.g. Adam [17]) and explicit functional constraints (Spectral
Normalisation)
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ODE-GAN

Assuming we track the dynamical system exactly - and the
gradient vector field is bounded - then in the vicinity of a
differential Nash equilibrium, the parameters converge to it at

a rate independent of the frequency of rotation with respect
to the vector field.
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Algorithm 1 Training an ODE-GAN

Require: Initial states (6, ¢), step size h, veloc-

ity function v(6, ¢) = —[%L, %‘3—], regular-

0
( il ODEStep(0k, ¢k, Vv, h) ization multiplier A, and initial step counter
¢k+1 ¢ = 0, maximum iteration /

if < I then

| (%G 2 go < Vo || & 8 <|0,4) &
Regulariser: 0, ODEStep(H ¢,V, h)
0« 60— h)\gg
Bd=0s= 1
end if

return (0, ¢)
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5.2.1 Different Orders of ODE Solvers
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Figure 3: Comparison between different orders of inte-

grators using A = 0.002 and h = 0.02.
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Training improves with increase in order of
integration

Increasing order further gives diminishing
returns

Higher order methods allow for much larger
step sizes:

o Euler’s becomes unstable with h > 0.04,
while Heun’s method (RK2) and RK4 do
not

Increasing regularization weight reduces the
performance gap between Euler and RK2
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e Theregulariser controls the truncation error
by penalising large gradient magnitudes

M e larger Aleads to smaller error
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Figure 4: Comparison of runs with different reg-
ularisation weight A shown in legend. The step
size used is A = 0.04, all with RK4 integrator.
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125 e Incontrast, the discriminator dominates the

game when using the Adam optimiser :
evidenced by a continuously decreasing D_loss,
while the G_loss increases

£ 1.00

0.75

0.50

0.25

0.0/ o Thisimbalance correlates with the
600000 1200000 0 600000 1200000 .
Step Step well-known phenomenon of worsening
FID and IS in late stages of training

0.00
0

Figure 5: The evolution of loss values for discrim-
inator (left) and generator (right) for ODE-GAN
(RK4) versus training with Adam optimisation.
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Figure 7: Here we compare using the convergence
of RK4 to using Adam, A = 0.01 for both.
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Our results challenge the widely-held view that
adaptive optimisers are necessary for training
GANs

the often observed degrading performance
towards the end of training disappears with
improved integration

this is the first time that competitive results for
GAN training have been demonstrated for
image generation without adaptive optimisers.

Vikram Voleti ODE-GAN


https://voletiv.github.io
https://mila.quebec/
https://arxiv.org/abs/2010.15040

ODE-GAN

e ODE-GAN canimprove significantly upon
SN-GAN for both IS and FID
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Figure 6: Here we compare ODE-GAN (with
RK4 as ODEStep and A = 0.01) to SN-GAN.
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Table 1: Numbers taken from the literature are cited. I denotes reproduction in our code. “Best” and
“final” indicate the best scores and scores at the end of 1 million update steps respectively. The means
and standard deviations (shown by +) are computed from 3 runs with different random seeds. We
use bold face for the best scores across each category incl. those within one standard deviation.

Method

|

FID (best) / FID(final) IS (best) / IS(final)

CIFAR-10 Unconditional

—DCGAN -
ODE-GAN(RK4)
ODE-GAN(RK4+Adam)
SN-GAN{

17.66 + 0.38 / 18.05 = 0.53
17.47 + 0.30 / 23.20 £+ 0.95
2171 +£0.61 1 26.16+0.27

7.97 £ 0.03 / 7.86 + 0.09
8.00 £ 0.06 / 7.59 £ 0.14
7.60 £ 0.06 / 7.02 £+ 0.02

— ResNet —
ODE-GAN (RK4)
ODE-GAN (RK4 + Adam)
SN-GANi

11.85 + 0.21 / 12.50 £+ 0.30
12.11 =028 | 2032 % 1.17
15.97+0.22 / 2398 1+2.08

8.61 + 0.06 / 8.51 + 0.01
8.23+0.04 / 792 £0.03
771005 / 720 022

WGAN-ALP (ResNet) [30] 12.96 £ 0.35 / — 8.56 /| —
— Evaluated with Sk samples —
SN-GAN (DCGAN) [23] 293 /| — 742 +0.08 / —
WGAN-GP (DCGAN) [14] 40.2 / — 6.68 +0.06 / —
SN-GAN (ResNet) [23] 21.7 021 | — 822+0.05/ —

ImageNet 128 x 128 Conditional

— ResNet —
ODE-GAN (RK4) 26.16 = 0.75 / 28.42 +1.46 38.71 + 0.82 / 36.54 + 1.53
SN-GANi 37.05+0.26 / 41.071+0.46 31.524+0.25 / 29.16 4+ 0.20
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H.1 Conditional ImageNet Generation
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Figure 8: Comparison of IS and FID for ODE-GAN (RK4) vs. SNGAN trained on ImageNet
128 x 128. In the plot on the left we used a ResNet architecture similar to Miyato et al. [23] for
ImageNet; on the right we trained with ResNet (large).
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Our empirical results support the hypothesis that, at least locally,

the GAN game is not inherently unstable.

Rather, the discretisation of GANs’ continuous dynamics,
yielding inaccurate time integration, CAUSES insta b|||ty

Adam and Spectral Norm may harm convergence, they are
not necessary when higher-order ODE solvers are available.
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Figure 12: Architecture used DCGAN (CIFAR-10). Sample of images generated using ODE-GAN

with h = 0.04, RK4 as the integrator and A = 0.01. . . . )
Figure 13: Architecture used ResNet (CIFAR-10). Sample of images generated using ODE-GAN

hitos://arxiv.ore/abs/2010.15040 (RK4) with h = 0.01, RK4 as the integrator and A = 0.01.
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Figure 14: Architecture used ResNet (ImageNet conditional). Sample of images generated using
ODE-GAN (RK4) with h = 0.02, RK4 as the integrator and A = 0.00002.
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Vikram Voleti ODE-GAN



https://voletiv.github.io
https://mila.quebec/
https://arxiv.org/abs/2010.15040

ODE-GAN

Fine print

e Upto 2xslower than original GAN training

e our algorithm seems to be more prone to landing in NaNs
during training for conditional models...
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Thank you!
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