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ABSTRACT

A wide variety of deep generative models has been developed in the past decade.
Yet, these models often struggle with simultaneously addressing three key require-
ments including: high sample quality, mode coverage, and fast sampling. We call
the challenge imposed by these requirements the generative learning trilemma, as
the existing models often trade some of them for others. Particularly, denoising
diffusion models have shown impressive sample quality and diversity, but their ex-
pensive sampling does not yet allow them to be applied in many real-world appli-
cations. In this paper, we argue that slow sampling in these models is fundamen-
tally attributed to the Gaussian assumption in the denoising step which is justified
only for small step sizes. To enable denoising with large steps, and hence, to re-
duce the total number of denoising steps, we propose to model the denoising distri-
bution using a complex multimodal distribution. We introduce denoising diffusion
generative adversarial networks (denoising diffusion GANs) that model each de-
noising step using a multimodal conditional GAN. Through extensive evaluations,
we show that denoising diffusion GANs obtain sample quality and diversity com-
petitive with original diffusion models while being 2000 faster on the CIFAR-10
dataset. Compared to traditional GANs, our model exhibits better mode coverage
and sample diversity. To the best of our knowledge, denoising diffusion GAN is
the first model that reduces sampling cost in diffusion models to an extent that al-
lows them to be applied to real-world applications inexpensively. Project page and
code: https://nvlabs.github.io/denoising-diffusion-gan.
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Introduction

forward diffusion

In diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020), there is a forward process that
gradually adds noise to the data xg ~ g(xg) in 7" steps with pre-defined variance schedule f;:

g(x1rlx0) = [ [a(xelxio1), q(xelxio1) = N (x5 /1 = Bixi_1, Bi), (1)
t>1

where g(x() is a data-generating distribution. The reverse denoising process is defined by:

Po(Xo.7) = p(XT) HPB(xt—-llxt)7 Po(X—1]x) = N (%¢—1; po (%4, ), 071), 2)
t>1
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Introduction

forward diffusion

L=—> Eqx, [Dxr (q(xe—1/x:)[|po(xe-1]x1))] + C,

t>1

Denoising distribution p(.) is assumed to be Gaussian, and with infinitesimal step sizes, it can
also be shown that the reversal of g (the denoising form of q) is as well
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Figure 2: Top: The evolution of 1D data distribution g(x() through the diffusion process. Bottom:,
The visualization of the true denoising distribution for varying step sizes conditioned on a fixed xs.
The true denoising distribution for a small step size (i.e., g(x4|x5 = X)) is close to a Gaussian
distribution. However, it becomes more complex and multimodal as the step size increases.
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G(wb z, t)

A

/\

and the predicted x¢ (See Appendix B for details). The distribution g(x;—1|Xo, X¢) is intuitively the
distribution over x;_; when denoising from x; towards xo, and it always has a Gaussian form for
the diffusion process in Eq. 1, independent of the step size and complexity of the data distribution
(see Appendix A for the expression of g(x;—1|xo,x;)). Similarly, we define pg(x;—1|x;) by:

| polosalx) = / Po(XolXe)g(3ke—1 e, Xo)dlxo = / P(2)a(ke-1[%e, X0 = Go(xe, 2, £))dz, (6)

where pg (%o |x;) is the implicit distribution imposed by the GAN generator Gy (x;, 2, t) : RV x RF x

TACKLI NG THE GEN ERATIVE LEARN: 2N :gm outputs X given x; and an L-dimensional latent variable z ~ p(z) := N (z; 0, I).
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Thank you!
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