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Abstract—Low cost RGB-D sensors such as the Microsoft
Kinect have enabled the use of depth data along with color
images. In this work, we propose a multi-modal approach
to address the problem of removal of fences/occlusions from
images captured using a Kinect camera. We also perform depth
completion by fusing data from multiple recorded depth maps
affected by occlusions. The availability of aligned image and depth
data from Kinect aids us in the detection of the fence locations.
However, accurate estimation of the relative shifts between the
captured color frames is necessary. Initially, for the case of static
scene elements with simple relative motion between the camera
and the objects, we propose the use of affine scale-invariant
feature transform descriptor (ASIFT) to compute the relative
global displacements. We also address the scenario wherein the
relative motion between the frames may not be global using the
depth map obtained by Kinect. For such a scenario involving
complex motion of scene pixels, we use a recently proposed robust
optical flow technique. We show results for challenging real-world
data wherein the scene is dynamic. The inverse ill-posed problems
of estimation of the de-fenced image and the inpainted depth map
are solved using an optimization-based framework. Specifically,
we model the unoccluded image and the completed depth map as
two distinct Markov random fields, respectively, and obtain their
maximum a-posteriori estimates using loopy belief propagation.

Keywords—Image de-fencing, Inpainting, RGB-D data, Kinect,
Belief propagation, Markov random field.

I. INTRODUCTION

In recent years there has been a proliferation of smart-
phones/tablets which enable users to capture their cherished
moments at any convenient time and location. Particularly,
visitors to tourist destinations often feel hindered in capturing
photographs/videos of objects that are occluded by barri-
cades/fences for security purposes. Looking through grilled
windows one often captures images of people, paintings or
fragile antiquities. We show such a fenced scene in Fig. 1
(a). We address the problem of removal of such occlusions
from these images/videos by taking a multi-modal approach
in this work. We assume that the user has access to depth
data along with color images. Such a constraint can easily be
fulfilled today with the advent of sensors such as the Microsoft
Kinect. For example, for the scene in Fig. 1 (a), we show the
corresponding depth map captured by the Kinect sensor in Fig.
1 (b). Note that the fence depth profile is occluding the depth
map of the background.

Time-of-flight sensors have been available since quite some
time but they are not sufficiently accurate. Kinect uses an infra-
red based active triangulation approach and possesses better
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Fig. 1. (a) First observation obtained from the video. (b) Depth map
corresponding to the first observation captured by the Kinect sensor. (c) Using
ASIFT [13] descriptor to find corresponding points and hence estimating
global dispacements between the first and second observations. (d) Fence mask
corresponding to the first observation. (e) De-fenced image obtained with the
proposed algorithm.

accuracy. The main advantage is that it has the depth sensor co-
located with the RGB camera in the same physical apparatus.
Hence, it is possible to obtain aligned depth maps as well as
color images of the same scene. In this work, we leverage this
fact to show that the depth map from Kinect can be used to
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detect occlusions such as fences/barricades.

Our multi-modal approach is related to prior work on image
de-fencing using only image data [1], [2], [3]. The problem of
image de-fencing and depth completion can be divided into
three challenging tasks. Firstly, given an image/video of the
occluded scene, the spatial locations of occlusions have to be
estimated accurately. This is a non-trivial problem and has been
addressed in the past [1], [2], [3]. However, unlike our multi-
modal method the works of [1], [2], [3] address this task only
with image data and do not have access to depth maps of the
occluded scene. The major novelty of our work is that we have
captured aligned depth data along with a color video of the
scene using the Kinect sensor. Therefore, the sub-problem of
fence detection is simplified considerably by processing in the
depth data domain. Our work is also related to recent works in
the area of depth inpainting [4], [5], [6], [7] but unlike these
techniques our work uses the Kinect sensor to capture both
RGB video and depth data.

Secondly, relative displacements between the image frames
have to be estimated since we capture a video of the scene by
translating the Kinect. Initially, we assume that the images are
related by global shifts since the distance between the sensor
and the occluded scene is significant. When the scene consists
of two or more planes with considerable depth difference
between them, the assumption of a single global displacement
of the entire scene becomes invalid. For this case, we consider
different motions for each plane. The depth map obtained from
Kinect sensor proves useful again since it can be leveraged to
segment out the different planes in the scene. The scenario is
even more challenging when objects in the scene are dynamic
or when the objects cannot be assumed to be planar.

These shifts between the image frames are critical to the
success of our algorithm since some portion of the scene which
is occluded in one frame will possibly be rendered visible in
the other images due to the translation of the Kinect. In fact,
this is the guiding principle behind our selection of frames
from the captured RGB video and depth profiles using the
Kinect sensor. Hence, our work is different from single image
inpainting techniques [8], [9], [10], [11] which rely primarily
on flowing information from surrounding regions, respecting
isophotes, into the missing data areas. Traditional optical flow
algorithms [12] yield inaccurate estimates due to the presence
of missing image data at the occlusions. We use a robust image
descriptor, affine scale invariant feature transform (ASIFT)
[13], to obtain the spatial coordinates of the corresponding
points between the relatively shifted frames. Sample points
matched using this descriptor are shown in Fig. 1 (c). For more
difficult cases, involving complex relative motion between the
scene elements and the camera, we have used a recently
proposed technique [14] for estimation of dense optical flow.

Thirdly, the observations have to be fused together so as
to estimate a fence-free image and depth map. We model
the input data obtained by the Kinect sensor and relate the
unknown de-fenced image and inpainted depth profile with
the captured RGB observations and depth maps, respectively.
Since the estimation of the unoccluded image and completed
depth profile are ill-posed problems, we use an optimization-
based framework to estimate both unknown quantities. We
model the de-fenced image and the inpainted depth profile
as distinct Markov random fields, respectively, and obtain
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Fig. 2. (a), (b) First and second observations captured with the RGB camera.
(c) Depth map corresponding to first observation obtained using Kinect.
(d) Segmented foreground region using captured depth map. (e) Matching
corresponding points in the foreground and background regions of the two
observations using ASIFT [13] descriptor (White lines depict matches in the
foreground and pink lines connect corresponding points in the background.)

(a) (b)

Fig. 3. (a) De-fenced image obtained using our method for the case of non-
global pixel motion. (b) Completed depth profile corresponding to the first
observation.

their maximum a-posteriori (MAP) estimates by minimizing
suitably formulated objective functions.

II. PROPOSED METHOD

We propose to model the “de-fenced” image and the
completed depth profile as two different Markov random fields.
Initially, we seek to derive the maximum a-posteriori estimate
of the de-fenced image given depth data and multiple frames
from the captured video of the occluded scene using the



Microsoft Kinect sensor. The degradation model is given as

ym = OmWmx+ nm (1)

where the operator Om crops out the un-occluded pixels from
the mth frame, ym represents the observations used, x is the
de-fenced image, Wm is the warp matrix and nm is the noise
assumed as Gaussian.

We detect the fence pixels in every observation and there-
fore estimate Om. Detection of fence pixels from image
intensities only is a difficult problem addressed in the past
in [15]. However, we show that it is possible to segment the
depth map of the entire scene obtained using Kinect to localize
the occlusions. We use Otsu’s method [16] on the depth data
to obtain the segmented fence masks. Initially, we assume that
the non-fence pixels in the frames are shifted with respect
to each other by a globally fixed amount. This assumption
is justified if the scene consists of a single plane due to
the significant distance of the scene from the camera. Hence,
Wm can be obtained by using affine SIFT [13] descriptors to
match corresponding points in the different frames. However,
sometimes scenes consist of multiple planar regions (apart
from the occlusions) for which pixel motions are different.
Furthermore, scene elements can be dynamic leading to non-
global pixel motion. We also address de-fencing of such scenes
in this work. Again the depth data from Kinect enables us
to segment out the various planar regions at different depths
from the sensor. ASIFT descriptors are then used to find pixel
motion corresponding to the individual segments. For some
challenging cases we have also used the method in [14] to
obtain dense optical flow. This is particularly useful if the scene
contains dynamic objects.

The maximum a-posteriori estimate of the de-fenced image
can be obtained as

x̂ = argmin
x

||ym −OmWmx||2 + β
∑
c∈C

Vc(x) (2)

where β is the regularization parameter. The joint pdf of the
MRF can be specified as Gibbsian by the Hammersley-Clifford
theorem [18]

P (x) =
1

Z
exp(−Vc(x)) (3)

where Z is the partition function and Vc(x) is the clique poten-
tial function. We choose a robust form for the clique potential
function as Vc(x) = |xi,j − xi,j+1|+ |xi,j − xi,j−1|+ |xi,j −
xi−1,j |+|xi,j−xi+1,j | considering a first-order neighbourhood.
We minimize the objective function in Eq. (2) by using the
loopy belief propagation (LBP) technique [17]. The parameter
β is chosen as 5× 10−4 for all our experiments.

Analogous to the procedure for image de-fencing, we relate
the occluded ‘fenced’ depth maps recorded by Kinect to the
inpainted depth profile.

dm = OmWmd+ nm (4)

where dm represents the occluded depth maps due to the
fence and d denotes the completed depth profile with the
explanation of other symbols being identical to Equation (1).
The maximum a-posteriori estimate of the completed depth
profile can be obtained as

d̂ = argmin
d

||dm −OmWmd||2 + α
∑
c∈C

Vc(d) (5)
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Fig. 4. (a), (b) First and third observations. (c) Depth map corresponding to
the first observation. (d) De-fenced image obtained using the proposed method.
(e) Depth completion using the proposed method. (f) Output of method in [1].

where α is the regularization parameter. Since we have a-
priori aligned the depth profiles recorded by Kinect with
the corresponding RGB images, we can use the estimates of
relative motion between the color frames obtained earlier to
align the multiple captured depth maps. Therefore, the matrices
Wm and Om in Eq. 5 remain identical to those in Equation
1. Similar to the estimation of the de-fenced image, we used
a robust form for the clique potential function, Vc(d) =
|di,j −di,j+1|+ |di,j −di,j−1|+ |di,j −di−1,j |+ |di,j −di+1,j |
considering a first-order MRF neighbourhood. We minimize
the objective function in Eq. (5) by using the loopy belief
propagation (LBP) technique [17]. The parameter α is chosen
as 5×10−4 for all our experiments. We note that the proposed
technique is robust to changes in the values of the smoothness
parameters β and α. It is to be observed that the depth
maps recorded using Kinect are prone to artifacts/holes due to
shadows/occlusions etc. Since we use multiple recorded depth
profiles using the Kinect sensor, it is highly unlikely that depth
data is missing at a particular spatial location in all the depth
maps. Therefore, our optimization-based framework is able to
inpaint the depth map effectively.
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Fig. 5. (a) De-fenced image obtained using the method in [2]. (b) Output of [3]. (c) De-fenced image obtained using the proposed method.

III. EXPERIMENTAL RESULTS

Initially, we report experiments wherein the relative pixel
displacements are assumed to be global. We actually capture
a video by panning the Kinect sensor which records both the
RGB data and the corresponding depth data. In Fig. 1 (a),
we show a painting occluded by a fence. We show the depth
map for the first observation in Fig. 1 (b). Note that we can
easily segment out the fence using this depth data by applying
Otsu’s method since the painting in the background is at a
different distance from the sensor. A robust estimate of the
segmented fence mask can be obtained after applying image
dilation operation to fence pixels and this is shown in Fig.
1 (d). We use the affine SIFT [13] descriptor to obtain the
relative global pixel shifts between 4 color observations chosen
from the captured video. The basic idea behind the choice of
a particular set of four observations is that data (image or
depth) which is occluded in one frame should be revealed in
the other images. If we are able to satisfy this requirement to a
reasonable degree the data term in Eq. 2 guides the image de-
fencing procedure well. Sample corresponding point matches
between the first and second frames are depicted in Fig. 1 (c).
The estimated pixel shifts between the four captured frames
were (-0.87, 4.42), (-2.9, 3.46), (-2.23, 8.45) relative to the
first observation. The de-fenced image estimated using the
proposed method is shown in Fig. 1 (e). It is clear that the fence
occlusions have been very effectively removed. Similarly it is
possible to obtain a good estimate of the “de-fenced” depth
map although we do not show it here for brevity since depth
profile is merely planar.

Next, we show results obtained with a video wherein the
frames contained non-global pixel motion. In Figs. 2 (a), (b)
we show two frames from such a video. Since optical flow
algorithms [12] do not give accurate estimates of the pixel
motion, this is a challenging scenario for de-fencing. The
depth map recorded by the Kinect sensor corresponding to the
first observation is shown in Fig. 2 (c). It is easy to observe
that the fence occlusion locations can be obtained by using
Otsu’s method for segmentation. We also observe from the
depth map that the scene consists of predominantly two depths.
Therefore, we assume that the scene is composed of two planar
regions at different depths from the Kinect. The segmented
foreground region is given in Fig. 2 (d). To obtain the relative
displacements between the foreground and the background
regions, respectively, in the four frames chosen from the
captured video, we use ASIFT descriptors. Sample matches
of corresponding points in the first and second observations

are shown in Fig. 2 (e). The pink lines connect corresponding
points in the background and the white lines connect points in
the foreground. The estimated pixel motion between frames for
the foreground region is (-2.74, -6.1), (-9.6, -2.95) and (-12.62,
-0.3), respectively. The pixel shifts for the background region
were estimated as (-1.24, -0.84), (0.49, 1.14) and (1.32, -0.94).
The de-fenced image obtained using the proposed algorithm is
shown in Fig. 3 (a). The effectiveness of our approach for even
such a case involving complex motion is clearly evident. In
Fig. 3 (b), we show the completed depth profile corresponding
to the first observation. Since there are only two depth layers
at a significant distance from the Kinect sensor, we are able
to successfully estimate them by assuming them to be planar.

As a challenging example, we show results for another
video wherein the relative displacements are non-global. In
Fig. 4 (a), (b) we show the first and third observations obtained
from a video captured by panning the Kinect camera. Note that
the fence pattern here is thicker in width and different from that
in Fig. 2. We used only three frames from the captured video
for this case. The estimated pixel shifts for the foreground
region is (2, 19) and (4, -12) relative to the first frame.
The shifts for the background region were obtained as (2.5,
3.73) and (4.8, 12.1), respectively. The depth map obtained
using Kinect is shown in Fig. 4 (c). The de-fenced image
corresponding to the first frame is shown in Fig. 4 (d). Observe
that there are hardly any artifacts and all edges are faithfully
reconstructed. It is interesting to observe the estimated depth
profile of the scene using our method shown in Fig. 4 (e).
Initially, we point out that there are multiple depth layers in
the scene. The Kinect captured depth map corresponding to
the first observation, depicted in Fig. 4 (c), has several artifacts
due to shadowing effects and occlusions by the fence. We have
used Otsu’s method to obtain the fence masks from each of
the three captured depth profiles. As shown in Fig. 4 (e), we
can easily discern three major depth layers corresponding to
the person, the poster and the window in the background. It
is interesting to observe that it is possible to even reconstruct
the depth of the rods in the window just above the upper edge
of the poster in the background.

We compare our method with the approach proposed in [1].
The technique in [1] makes the assumption that the frames
of the captured video are relatively shifted by global pixel
motion. Hence, it cannot handle the scenario wherein there
are multiple depths in the scene to be de-fenced. We give as
input to [1] the motion of the background pixels in the 3 frames
as the global motion and the output is shown in Fig. 4 (f). As



expected, the background region is de-fenced to a reasonable
degree but there are ghosting effects in the foreground region
due to wrong pixel motion. The other major drawback of the
technique in [1] is that the fence pixels have to be marked
manually by a user and hence the method is not automatic.
Finally, the technique of [1] is only restricted to image de-
fencing using RGB videos and does not address the problem
of inpainting the depth profile of the scene.

We compare our technique with previous works for image
de-fencing [2], [3]. In Fig. 5 (a), we show one of the results of
[2]. We can clearly observe several artifacts on the right side
of the head of the person facing the camera. Also, the lips have
not been reconstructed properly. Particularly, note the close-up
shown on the left side of the figure. In [2], only a single image
has been used for removal of the fence occlusions. However,
the authors of [3] have used a video for the same example.
Using multiple frames they attempt to de-fence the image and
the result is shown in Fig. 5 (b). In the close-up shown in the
inset of Fig. 5 (b), we can see that there are still some artifacts
near the lip region although the result is better as compared
to Fig. 5 (a). We used the same example video and extracted
four frames from it. Note that we do not have depth data for
this example since the video was not captured using the Kinect
sensor. We have used the method in [19] to isolate the fence
masks from the four observations. The optical flow between
the frames was estimated using the method in [14]. The de-
fenced image using our algorithm is shown in Fig. 5 (c). We
can clearly observe the improvement in the reconstruction of
the de-fenced image over the outputs of [2] and [3]. There are
hardly any artifacts and the face is properly reconstructed.

In the next experimental result we use complex shapes
and multiple depths to demonstrate the effectiveness of the
proposed algorithm. In Figs. 6 (a) and (b), we show the first
and third observations obtained from the captured RGB video.
There are multiple scene elements including a star-shaped
object. The face of the person is heavily occluded with a thick
fence. In Fig. 6 (c), we show the depth profile corresponding
to the first observation affected by fence occlusions. Observe
that there are several holes in this depth map due to shadowing
and occlusion effects. The edges of the “star” shaped are
affected adversely by occlusions. Since, in this case, the scene
consists of several subtle depth variations, we obtain the
relative motion between the frames using a recently proposed
approach for estimating dense optical flow [14]. The de-fenced
image is shown in Fig. 6 (d). The effectiveness of the proposed
technique is evident as seen from the accurately estimated
boundaries of the different objects in the scene. Also, the thick
occlusions on the face are completely removed. The optical
flow between the first and third frames is shown in Fig. 6
(e). The completed depth profile is depicted in Fig. 6 (f).
Unlike the scenario of image de-fencing, for the case of depth
inpainting, we have to treat the artifacts in the depth maps
due to shadows also as occlusions since depth data is missing
at those spatial locations. Hence, depth inpainting is a more
challenging problem as compared to image de-fencing. Also,
this result shows that our technique is able to handle complex
motion of scene pixels since there are variations of depth
values in the various objects comprising the scene. Particularly,
note the variations of depth on the body of the person and the
ramp-shaped depth profile of the calendar.

(a) (b) (c)
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Fig. 6. (a), (b) First and third observations from the captured color video.
(c) Occluded depth profile obtained using Kinect corresponding to the first
observation. (d) De-fenced image using the proposed method. (e) Optical flow
between frames 1 and 3 using the technique in [14]. (f) Inpainted depth map
using our method.

Until now we have shown the results obtained for the
scenario wherein the scene elements are static and the Kinect
sensor is moved while capturing a video. We now consider a
case where the scene is also dynamic in nature. Specifically,
we captured data when a person is walking in a corridor
behind a fence. We show the first and fourth observations from
the captured color video in Figs. 7 (a) and (b). The depth
profile corresponding to the first frame is shown in Fig. 7 (c).
Again, we estimated the relative displacements between the
observations using [14]. The de-fenced image is shown in Fig.
7 (d). The accuracy of image reconstruction is high in spite
of multiple depth values on the body of the individual. The
optical flow between the first and the fourth frames is shown
in Fig. 7 (e). The inpainted depth map is shown in Fig. 7
(f), wherein, the depth variations over body of the person and
the accuracy of reconstruction of the depth boundaries can be
easily observed.

Finally, we show the performance of the proposed method
for yet another challenging case wherein we consider complex
motion of scene elements. In Figs. 8 (a) and (b), we show the
first and the third observations, repectively from a video. Here
a person behind a fence is moving his head by a significant
amount. Note that the fence is different and much thicker than
the cases considered in Figs. 2, 6 and 7. The occluded depth
profile corresponding to the first observation is shown in Fig. 8
(c). Observe the significant number of spatial locations wherein
depth data of the background is corrupted or missing. We used
four observations from the color video to obtain the de-fenced
image shown in Fig. 8 (d). We note that the vertical edge of the
wall which is missing in the first and third observations shown
in Figs. 8 (a) and (b) is properly reconstructed in Fig. 8 (d). We
obtain the relative motion between the frames using a recently
proposed approach for estimating dense optical flow [14]. The
optical flow between the first and second frames is shown
in Fig. 8 (e). The effectiveness of the proposed technique is
adequately demonstrated in the accurate reconstruction of the
depth map in Fig. 8 (f), where the background scene consists
of several depth layers and fine variations.
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Fig. 7. (a), (b) First and fourth observations from the captured color video
with a person walking behind a fence. (c) Occluded depth profile obtained
using Kinect corresponding to the first observation. (d) De-fenced image using
the proposed method. (e) Optical flow between frames 1 and 4 using the
technique in [14]. (f) Inpainted depth map using our method.

(a) (b) (c)
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Fig. 8. (a), (b) First and third observations from the captured color video
with a person moving his head. (c) Occluded depth profile obtained using
Kinect corresponding to the first observation. (d) De-fenced image using the
proposed method. (e) Optical flow between frames 1 and 2 using the technique
in [14]. (f) Inpainted depth map using our method.

We provide the input data and results obtained for each
experiment in the supplementary data accompanying our paper.

IV. CONCLUSION

We proposed a multi-modal approach for “de-fencing” a
scene using RGB-D data. Specifically, we use multiple frames
from a video and the aligned depth maps captured by panning
the scene with the Microsoft Kinect sensor. We addressed
the problem of identification of the fence pixels by using the
captured depth data. We considered several scenarios regarding
the motion of pixels in the frames of the video. Firstly, we
assumed global motion of all scene pixels considering the
significant distance of the scene from the sensor. Next, we also
addressed the challenging scenario of non-global motion as
well as dynamic scene elements. We proposed an optimization-

based approach by solving for the maximum a-posteriori
estimate of the de-fenced image and the inpainted depth profile
assumed to be two distinct Markov random fields. Our results
show the effectiveness of the proposed algorithm for real-world
data.

As part of future work, we will develop a real-time auto-
matic image de-fencing and depth completion algorithm which
will be useful with the advent of cameras equipped with depth
sensors.
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