
Carry-Free Implementations of Arithmetic
Operations in FPGA

Vikram Voleti
International Institute of Information Technology, Hyderabad

Email: vikram.voleti@gmail.com

Abstract—Arithmetic operations like addition suffer
from carry propagation which significantly delays the
processing of signals in circuits. This paper details carry-
free implementation of arithmetic operations. Detailed
truth tables, logic circuits and circuit designs are con-
structed for carry-free addition, subtraction and mul-
tiplication. The circuits are implemented on an FPGA,
and the path delays and space utilization are compared
with those of standard implementation. The problem of
implementing carry-free logic is analyzed, and design
improvements to method proposed are provided.

I. INTRODUCTION

Even with recent development in technology of
integrated circuits, various high-speed circuits with
regular structures and low power design still suffer
from problems of path delay, limited range of the
number of bits, and complexity in hardware. It is well-
known that the addition of radix-B numbers suffers
from carry propagation. Since the speed of digital
processors depends mostly on the speed of the adders
used in the system, it is critical to optimize the addition
operation to speed up all computations.

Simple carry-ripple adders take time proportional
to the length of the longest path from input to out-
put. Even though this can be reduced to a depth of
O(log(n)) by carry-lookahead adders [1], the depth
still grows with the number of digits, and cannot be
improved upon unless a different number system is
used. Signed digit number systems [2-8] could be used
to eliminate carry propagation and perform addition
in O(1) time. However, as [8] explains, the standard
addition algorithms do not work for binary numbers
(B = 2).

[9, 10] suggest to recode the input numbers so
that subsequent addition and subtraction of binary
numbers become carry-free. Parhami [9], in particular,
recodes the numbers into a format that allows carry-
free arithmetic operations effectively. In this paper, this
format is used to recode binary numbers for carry-
free arithmetic operations (see section IV). Since the
focus is on using carry-free logic to perform arithmetic
operations on binary numbers, the goal is to make
arithmetic modules that take binary numbers as input,
and perform addition or multiplication on them. To
consider least memory requirement, only the minimal
digit set {−1, 0, 1} has been considered. It is also of
significant advantage to have these circuits as reusable
modules in building circuits for more complex arith-
metic operations, like modular reduction, which has
significant relevance in cryptographic applications.

In this paper, circuits for the carry-free addition
of recoded numbers, binary numbers in a non-naive
way, and carry-free multiplication of binary numbers
have been designed. The modular nature of these
circuits is exemplified by the use of Carry-Free Adders
to build a Carry-Free Multiplier. These circuits have
been implemented on an FPGA, and their speeds and
area requirements have been compared with those of
standard addition. They have then been analyzed for
limitations. The contents of this paper are: (i) details
of the conversion between binary, signed digit, and Re-
coded Binary Signed Digit (see section IV) numbers,
with truth table and logic equations, (ii) implementa-
tion of arithmetic operations of addition, subtraction,
multiplication using carry-free logic (sections V, VI),
(iii) comparison of the carry-free implementations and
their standard versions (section VII), (iv) analysis of
the carry-free implementations (section VIII).

II. RELATED WORK

[11] begins to design a carry-free multiplier. This
paper details all the design features involved to create
an end-to-end carry-free multiplier using carry-free
adders as modules. [12] uses the same digit format
as us, that mentioned in [9], but uses trinary signed
digits. [13] uses bit-pair recording to generate partial
products, and then adds them in the form of a binary
tree using a carry-free adder. This paper’s carry-free
multiplier uses the Karatsuba multiplication algorithm
[14] (see section VI) and performs all additions using
a carry-free adder.

The quarternary signed digit system has been ex-
plored in light of carry-free implementations of addi-
tion [15-18] and multiplication [19-21]. We, however,
restrict our paper to the format specified in [9], which
only uses a binary signed digit format, recoded for
carry-free operations. In addition, we provide our own
circuit designs for carry-free adders of recoded num-
bers, binary numbers, and multiplier that uses carry-
free adders as internal modules (see sections V, VI).

III. OUR IMPLEMENTATION

To achieve carry-free implementations of arithmetic
operations, the input binary numbers are first converted
to a signed digit format. This paper uses Recoded
Binary Signed Digit (RBSD, see section IV) format as
described in [9]. Arithmetic operations in the domain
of RBSD numbers can be implemented very effectively
in a carry-free way.

Addition and multiplication are then performed on
these RBSD numbers to produce binary signed digits.



These arithmetic operations can be summarized in
the form of truth tables, as they are combinatorial in
nature. The truth tables are then converted to Product-
of-Sum equations so that electronic circuits could be
designed that implement the tables. These electronic
circuits are implemented in Verilog and run on an
FPGA to measure the path delay and LUT usage. The
results are compared with those of standard implemen-
tation of addition. The path delays are also analyzed
to reveal the costliest path.

RBSD numbers and the conversions between binary,
BSD and RBSD numbers are detailed in section IV.
We mention why using RBSD numbers leads to carry-
free arithmetic. Our carry-free implementations of
arithmetic operations on RBSD numbers are described
in section V. In section VI, we design end-to-end carry-
free arithmetic operations on binary numbers.

IV. RECODED BINARY SIGNED DIGIT NUMBERS

Carry-free operations can be implemented by first
converting binary numbers to binary signed digits
{−D..0..D}. The negative numbers in the digit set
help extend the operation set of the field of numbers
to carry-free operations.

Among the different methods of converting binary
numbers into signed digits [7-10], we chose the solu-
tion provided by Parhami [9] to recode a given binary
number x of length n to an equivalent Signed Digit
number z of length n + 1 such that there are no two
neighboring digits zi+1 and zi with zi+1 ∗ zi = 1. As
proven in [9], this is essential to implementing carry-
free addition, and shall be called “Recoded Binary
Signed Digits”, or RBSD. We limit our digit set to
{−1, 0,+1}, and show that computational gains by
using the least number of signed digits are significant
in themselves.

In the following subsections, conversions between
Binary, BSD and RBSD formats are detailed. As these
are combinatorial circuits, there is no delay from carry
propagation.

A. Binary to RBSD

Binary numbers are first converted to RBSD before
performing any arithmetic operation on them. The
table of conversion from two consecutive binary digits
to one RBSD digit at the higher binary digits position
is given in Table I. For example, the binary number
10110 is converted to 11̄101̄0. Moving bit-by-bit from
lower to higher bit, 0(0) → 0, 10 → 1̄, 11 → 0,
01 → 1, 10 → 1̄, (0)1 → 1. As can be seen, the
RBSD number contains one bit more than the original
binary number.

The conversion from binary to RBSD is such that
the value of the number remains the same, but there are
no two consecutive 1s or -1s. This, in effect, eliminates
the possibility of a Carry beyond one position. It is
easy to see the conversion from binary to RBSD:

Zs
i = Xi . ¬Xi−1 (1)

Zv
i = (Xi . ¬Xi−1) + (¬Xi . Xi−1) (2)

Here, Zs
i is the sign bit and Zv

i is the value bit of
the RBSD number. ‘.’ is the and operation, ‘+’ is the
or operation, and ‘¬’ is negation.

TABLE I
BINARY TO RBSD CONVERSION

Xi Xi−1 Zi

0 0 0
0 1 1
1 0 -1 or 1̄
1 1 0

B. BSD to RBSD

It is important to note that the field of RBSD
numbers is not closed under addition. This means that
the addition of two RBSD numbers shall result in
a BSD sum, but which is not necessarily an RBSD
number. Thus, a Carry-Free Addition module of binary
numbers (converted to RBSD) needs to be followed
by a BSD-to-RBSD Converter. Although this makes
for another overhead in computation, we shall see
in section VII that the overall computation time is
significantly lesser than that for standard addition.

The conversion from BSD to RBSD is a more
complex process, because a binary number has only
two possible digits {0, 1}, while a BSD number has
three possible inputs {−1, 0, 1}. This conversion table
has been provided in [9], which is summarized in Table
II. In the table, ‘X’ implies “don’t care”, i.e. either
of {−1, 0, 1}. As explained in [9], the conversion of
a BSD bit yi into an RBSD bit zi requires the 3
following bits in the BSD number, yi−1, yi−2, yi−3.
It can be seen that this is also a combinatorial circuit,
and takes O(1) time.

TABLE II
BSD TO RBSD CONVERSION

yi yi−1 yi−2 yi−3 zi yi yi−1 yi−2 yi−3 zi

-1 -1 -1 X 0 0 1 -1 X 0
0 -1 0 0 -1 0
0 0 1 0 0 1
0 1 1 0 1 1
1 X 1 1 X 1

-1 0 -1 X 1 1 -1 -1 X 0
0 X -1 0 -1 0
1 X -1 0 0 1

-1 1 -1 X -1 0 1 1
0 -1 -1 1 X 1
0 0 0 1 0 -1 X 1
0 1 0 0 X -1
1 X 0 1 X -1

0 -1 -1 X -1 1 1 -1 X -1
0 -1 -1 0 -1 -1
0 0 0 0 0 0
0 1 0 0 1 0
1 X 0 1 X 0

0 0 X X 0

C. BSD to Binary

Table III can be used to convert a BSD or RBSD
number into its Binary form. It details the conversion
of one bit of the BSD digit along with the carry bit at
its position (0 for the least significant), into the Binary
bit at the same position, and a carry bit for the next
digit. The process involves carry propagation.



TABLE III
BSD (OR RBSD) TO BINARY CONVERSION

BSD (Z) carry in (c) Binary (B) carry out (C)
-1 0 1 1
-1 1 0 1
0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 0

The conversions in Table III can be represented
through logical equations, Zs is the sign bit, and Zv

is the value bit of Z as equations (3) and (4):

B = (¬Zv . c) + (Zv . ¬c) (3)
C = (¬Zv . c) + Zs (4)

V. CARRY-FREE OPERATIONS OF RBSD NUMBERS

In the following subsections, carry-free addition and
subtraction of RBSD numbers are described.

A. Carry-Free Addition of RBSD numbers

Before dealing with Binary numbers, we first tackle
the easier problem of designing carry-free addition of
two RBSD numbers using the truth table in Table
I. The sum digit of two numbers depends on two
consecutive digits of each of the input numbers, since
carry has to be accounted for. So we consider two
bits each from the two inputs, Xi, Xi−1, Yi, Yi−1, to
compute the sum at the higher bits position, Si. The
resulting truth table is documented in Table IV.

Table IV can transformed into a Product-of-Sum
form to implement an electronic circuit that performs
Carry-Free RBSD Addition. The optimized Product-
of-Sum form of Table IV is given in equations (10)
and (11):

S0 = ¬Xs
i + Y s

i + ¬Y v
i (5)

S1 = ¬Xv
i + Y v

i + ¬Xs
i−1 + ¬Y s

i−1 (6)
S2 = Xv

i + ¬Y v
i + ¬Xs

i−1 + ¬Y s
i−1 (7)

S3 = ¬Xs
i + Y s

i + ¬Xv
i−1 + Y s

i−1 + ¬Y v
i−1 (8)

S4 = Xv
i + ¬Y s

i + Xs
i−1 + ¬Xv

i−1 + ¬Y v
i−1 (9)

Ss
i = S0 . S1 . S2 . S3 . S4 . (¬Xv

i + ¬Y s
i ) .

(Xs
i + Y s

i + Xs
i−1) . (Xs

i + Y s
i + Y s

i−1)
(10)

Sv
i = S0 . S1 . S2 . S3 . S4 . (Xs

i + ¬Xv
i + ¬Y s

i )

. (¬Xv
i + ¬Y v

i + Xv
i−1) . (¬Xv

i + ¬Y v
i +

Y v
i−1) . (Xv

i + Y v
i + Xv

i−1) . (Xv
i + Y v

i +

Y v
i−1) . (Xv

i + Y v
i + ¬Xs

i−1 + Y s
i−1) . (Xv

i +

Y v
i + Xs

i−1 + ¬Y s
i−1)

(11)
Equations (10) and (11) describe the i-th sign and

value bits of the Sum of two binary numbers X and
Y at the i-th position. The computation of the sum bit
at each position is performed by the “add RBSD”
module that uses circuits described by equations (10)
and (11). It is important to note that the computation
of the first and last bits require phantom 0s to complete
their inputs.

TABLE IV
BSD TO RBSD CONVERSION

Xi Yi Xi−1 Yi−1 Si Xi Yi Xi−1 Yi−1 Si

-1 -1 0 0 0 0 0 0 X 0
0 1 0 1 -1 0
1 0 0 1 1 1
1 1 0 0 1 -1 -1 0

-1 0 0 X -1 X 0 1
1 -1 -1 0 -1 1
1 0 -1 1 -1 1
1 1 0 1 -1 -1 0 0

-1 1 0 -1 0 1 1 0
0 0 0 0 0 0
1 -1 0 0 1 0
1 0 0 1 0 -1 -1 0

0 -1 X 0 -1 -1 0 1
-1 1 -1 -1 1 1
0 1 -1 0 X 1
1 1 0 1 1 -1 -1 -1

0 0 -1 -1 -1 -1 0 0
X 0 0 0 -1 0
-1 1 0 0 0 0

B. Carry-Free Subtraction of RBSD Numbers

The negative of an RBSD number can be obtained
by interchanging the 1s and -1s in it. For example,
RBSD [10 − 1] is decimal 3, while RBSD [−101] is
−3. Thus, by carrying out Carry-Free Addition of the
first number and the negative of the second number,
Carry-Free Subtraction is achieved.

VI. CARRY-FREE ARITHMETIC OPERATIONS OF
BINARY NUMBERS

The following subsections describe carry-free addi-
tion and multiplication of binary numbers.

A. Carry-Free Addition of Binary Numbers

A naive way of performing the addition of two
binary numbers is by simply connecting a Binary-
to-RBSD Converter module in cascade to the Carry-
Free Adder for RBSD Numbers, designed previously
in Section IV.A. Although this is functionally correct,
a better approach would be to combine the truth tables
of these two modules, and make a single truth table
that takes as input binary digits, and produces their
sum.

Thus, a new truth table, Table V, is constructed.
The inputs consist of three consecutive bits each of
the two input binary numbers, A and B, since every
bit of an RBSD number depends on two bits in the
binary number, and RBSD addition at a bit requires
two RBSD bits. So there are 64 combinations of
binary inputs to be taken care of. Each combination
results in two RBSD numbers, which then needed to
be added using Table IV. The output sum bit is placed
in the most significant position among the three input
positions. The columns in Table V are respectively Ai,
Ai−1, Ai−2, Bi, Bi−1, Bi−2, and the sum Si.

Table V was simplified into the optimal Product-of-
Sum form, shown in equations (19) and (20):



S0 = Ai + Ai−1 + ¬Bi + ¬Bi−1 (12)
S1 = Ai + Ai−1 + ¬Ai−2 + ¬Bi + Bi−1 + ¬Bi−2

(13)
S2 = Ai + ¬Ai−1 + Ai−2 + Bi + ¬Bi−1 + ¬Bi−2

(14)
S3 = ¬Ai + Ai−1 + Bi + ¬Bi−1 (15)
S4 = ¬Ai + Ai−1 + ¬Ai−2 + Bi + Bi−1 + ¬Bi−2

(16)

S5 =¬Ai + ¬Ai−1 + Ai−2 + ¬Bi + ¬Bi−1+

¬Bi−2

(17)

S6 = ¬Ai + ¬Ai−1 + ¬Ai−2 + ¬Bi + ¬Bi−1 (18)

Ss
i = S0 . S1 . S2 . S3 . S4 . S5 . S6 . (Ai+

Ai−1 + Bi) . (Ai + ¬Ai−1 + Ai−2 + Bi+

Bi−1) . (Ai + ¬Ai−1 + Ai−2 + ¬Bi) . (Ai+

¬Ai−1 + ¬Ai−2) . (¬Ai + Ai−1 + ¬Bi+

Bi−1) . (¬Ai + ¬Ai−1 + Bi)
(19)

Sv
i = S0 . S1 . S2 . S3 . S4 . S5 . S6 . (Ai+

Ai−1 + Ai−2 + Bi + Bi−1) . (Ai + Ai−1+

¬Ai−2 + Bi + Bi−1) . (Ai + ¬Ai−1 + ¬Bi+

Bi−1) . (Ai + Ai−1 + Ai−2 + ¬Bi + ¬Bi−1

+ Bi−2) . (Ai + ¬Ai−1 + ¬Ai−2 + Bi+

¬Bi−1) . (¬Ai + Ai−1 + Ai−2 + ¬Bi+

Bi−1) . (¬Ai + Ai−1 + ¬Ai−2 + ¬Bi + Bi−1

+ Bi−2) . (¬Ai + ¬Ai−1 + Bi + Bi−1) .

(¬Ai + ¬Ai−1 + Ai−2 + Bi + ¬Bi−1 + Bi−2)
(20)

B. Carry-Free Subtraction of Binary Numbers

It is fairly straightforward to see that subtraction of
two binary numbers can be achieved by the addition
of one number with the negative of the other, as
mentioned in Section IV.B. In this case, the two binary
numbers must be converted to their 1s complement
or 2s complement forms before converting them into
RBSD numbers. Section VIII.A deals with this further.

C. Carry-Free Multiplication of Binary Numbers

Multiplication forms a very critical part of arith-
metic operations in signal processing applications. The
school-book multiplication algorithm is time-intensive
(O(n2)), and so is not a preferable option for core
operations.

Karatsuba Algorithm [14] for multiplication proves
to be the ideal algorithm, providing a much faster
O(nLog23) time. Making this algorithm carry-free can
prove quite useful. Since multiplication involves re-
peated addition, a cascading of carry-free addition
modules produces carry-free multiplication.

The Karatsuba algorithm implements multiplication
of two numbers, x and y, by first splitting them into
two parts: x = x1B

m + x0, y = y1B
m + y0, at some

digit place m. The standard multiplication of x and y

TABLE V
CARRY-FREE ADDITION OF BINARY NUMBERS

0 0 0 0 0 0 0 1 0 0 0 0 0 -1
0 0 1 0 0 0 1 -1
0 1 0 1 0 1 0 0
0 1 1 1 0 1 1 0
1 0 0 -1 1 0 0 0
1 0 1 -1 1 0 1 0
1 1 0 0 1 1 0 -1
1 1 1 0 1 1 1 -1

0 0 1 0 0 0 0 1 0 1 0 0 0 -1
0 0 1 1 0 0 1 0
0 1 0 1 0 1 0 0
0 1 1 1 0 1 1 0
1 0 0 -1 1 0 0 0
1 0 1 0 1 0 1 1
1 1 0 0 1 1 0 -1
1 1 1 0 1 1 1 -1

0 1 0 0 0 0 1 1 1 0 0 0 0 0
0 0 1 1 0 0 1 0
0 1 0 1 0 1 0 0
0 1 1 0 0 1 1 1
1 0 0 0 1 0 0 -1
1 0 1 0 1 0 1 -1
1 1 0 0 1 1 0 -1
1 1 1 1 1 1 1 0

0 1 1 0 0 0 1 1 1 1 0 0 0 0
0 0 1 1 0 0 1 0
0 1 0 0 0 1 0 1
0 1 1 0 0 1 1 1
1 0 0 0 1 0 0 -1
1 0 1 0 1 0 1 -1
1 1 0 1 1 1 0 0
1 1 1 1 1 1 1 0

would require 4 multiplications, as can be seen from
equation (21).

x ∗ y = (x1B
m + x0) ∗ (y1B

m + y0)

= (x1 ∗ y1)B2m + (x1 ∗ y0 + x0 ∗ y1)Bm + x0 ∗ y0
(21)

But the Karatsuba algorithm requires only 3 multi-
plications, given in equations (22), (23), and (24).

z0 = x1 ∗ y1 (22)
z1 = x0 ∗ y0 (23)
z2 = (x1 + x0) ∗ (y1 + y0) (24)

Using z0, z1 and z2, the product of x and y is
computed in equation (25).

x ∗ y = z0B
2m + (z2 − z1 − z0)Bm + z1 (25)

Thus, the Karatsuba algorithm decreases the number
of multiplications by 1, while increasing the number
of additions (subtractions are counted as additions) by
1. Since addition is an O(1) process using the carry-
free adder designed in the previous section, this is a
highly feasible compromise.

Figure 1 is the circuit implementation of the Karat-
suba Algorithm, for carry-free multiplication of two
66-bit binary numbers A and B. As can be seen, the
three multiplications are performed on binary numbers.
One of these required the conversion from BSD to
binary, which is a carry-full step, and is expected
to contribute significantly to the path delay. It shall
be seen in section VII that it is just so. However, it
shall also be seen that despite this, the path delay of



Fig. 1. Circuit design of carry-free muliplication of binary numbers.

carry-free multiplication is lesser than that of standard
addition. It is to be noted that the output of every
module is converted to RBSD, to ensure carry-free
operation in the subsequent modules.

VII. RESULTS

All circuits were designed in Verilog and run using
Xilinx-9 on a Virtex-5 FPGA 9 (5vlx30ff324-3). All
modules were also coded in Octave to verify their
computations.

A. Addition

Table VI lists the comparison of computation times
of addition and multiplication between standard imple-
mentations and carry-free implementations described
in the previous sections. Two metrics were analysed
to compare the performance path delay, Slice Logic
Utilization, i.e. the percentage of Slice LUTs on the
FPGA utilized, which is equivalent to the Slice Logic
Distribution, i.e. the number of LUT Flip-Flop pairs
utilized, out of the 19200 present. As can be seen
from Table VI, carry-binary binary addition takes
lesser memory, as well as significantly lesser time than
standard addition.

B. Multiplication

Table VI also lists the path delay and LUT usage for
the carry-free implementation of multiplication. As can
be seen, carry-free multiplication takes lesser time than
even standard addition, it can be inferred that it takes
significantly lesser time than standard multiplication.

Table VII lists the path delays of individual modules
in the Carry-Free Multiplier, in ascending order of
time taken. It can be observed that the most time-
consuming module is the BSD to Bin33 module,
which involves carry-full operation. All carry-free op-
erations clearly take less than a third of the time taken
by a simple BSD to binary conversion. The advantage
of carry-free operation is highlighted in this result.

TABLE VI
COMPARISON OF RESULTS

Metric Standard CF RBSD CF Binary CF
Add Add Add Mul

Path delays 71.3 ns 4.8 ns 4.0 ns 25 ns
Slice LUTs 2% 4% 1% 11%

LUT FF pairs 384 928 265 2223

TABLE VII
PATH DELAYS IN CARRY-FREE MULTIPLICATION

Module Delay BSD to RBSD68 4.0 ns
Bin to RBSD68 3.6 ns BSD to RBSD132 4.0 ns
CF Add Bin33 4.0 ns add RBSD 69 4.8 ns
CF Add Bin66 4.0 ns add RBSD 133 4.8 ns
CF Add Bin132 4.0 ns BSD to Bin33 12.8 ns

VIII. ANALYSIS

A. Use of 2’s Complement binary numbers

Throughout the paper, binary numbers have been
assumed to be positive, where n-bits of the binary
number convert to 2∗(n+1) bits of the RBSD number
(n+ 1 each of sign and value bits). However, negative
numbers, i.e. the possible use of binary numbers as
being in their 2’s complement forms, has not been
explored. The good news here is that this incorporation
is particularly easy. In its 2’s complement form, there
shall be no increase in number of bits in the binary
number’s conversion to RBSD, since it already has an
extra bit included. If the number is negative, the most
significant bit of its RBSD form shall inevitably be -1.
Thus, the number of bits would increase to just 2n.

B. Carry Free Adder + BSD-to-RBSD converter

The field of RBSD numbers is not closed under
addition, so the sum of two RBSD numbers results
in a BSD number that is not necessarily RBSD. Since
many applications require further use of the sum (e.g.
multiplication), it is imperative to convert it into RBSD
before using it elsewhere. Fortunately, BSD to RBSD
conversion is combinational, so it does not delay the
circuit much. This is why every Carry-Free Adder is
followed by a BSD-to-RBSD converter in the Carry-
Free Multiplier (Figure 1).

It can be argued that a Carry-Free Adder and a BSD-
to-RBSD converter should be combined to make one
single truth table, so that there is no delay in adding
RBSD or binary numbers into an RBSD sum. How-
ever, making such a concise table is quite painful. The
BSD-to-RBSD converter takes 4 consecutive digits of
the input BSD number, and produces 1 output digit at
the most significant digit position. A Carry-Free Adder
takes 2 consecutive digits from each RBSD input,
or 3 from each binary input, to produce one output
digit. Since these act as inputs to the BSD-to-RBSD
Converter, the Carry-Free Adders require 5 consecutive
RBSD digits, or 6 consecutive binary bits to produce
one output digit. This leads to a table having 35 = 243
rows in case of RBSD Adder, and 26 = 64 rows in
case of Binary adder. It is practically infeasible, and
quite unnecessary, to manually construct a Product-of-
Sum form for the combined truth table.



C. Carry-Free Karatsuba Multiplication

1) Multiplication of BSD numbers: The first step
of Karatsuba multiplication involves splitting the input
number into two parts. In case of BSD numbers,
simply splitting the number at the middle is mathemat-
ically incorrect, and leads to erroneous results. More-
over, mathematically sound splitting involves carry
propagation, which opposes our goal of fast com-
putation. So, the three multiplications in the circuit
are of binary numbers (see Figure 1), BSD-to-Binary
conversion having explicitly been done in one case for
this purpose.

2) Carry-full 34-bit BSD-to-Binary converter: As
seen from Table VII, the two 34-bit RBSD-to-Binary
converters used in the multiplier (see Figure 1) are the
major contributors to the path delay of this circuit, as
they involve carry propagation. It cannot be avoided.

It could be argued that the use of two 17-bit
RBSD-to-Binary converters can help decrease path
delay, since they can be run in parallel. However, this
would involve splitting the RBSD number which, as
discussed above, results in some carry propagation of
its own. It is to be seen whether the overall path delay
is indeed lesser.

3) Multiplication of integers: Ultimately, multipli-
cation operation is performed using integer arithmetic
on binary numbers, which involves carry propagation.
To speed this up, it can be argued that the 34-bit num-
bers can be split into two 17-bit numbers, and integer
multiplication can be carried out in parallel over them.
However, this is equivalent to adding one more level to
the Karatsuba multiplication. This shall result in thrice
the number of multiplications involved. It needs to be
checked through experimentation whether this incurs
lesser path delay.

4) Multiplication of binary numbers with more than
64 bits: The original design was meant for 64-bit
binary numbers, the extra two bits can be set to 0 to
add two n-bit numbers, where n <= 64. For n > 64,
each input number could be split into the lowest 64
bits and the rest. The Karatsuba algorithm can then be
recursively employed on the two parts.

IX. CONCLUSION

It has been quantifiably verified that carry-free im-
plementations of arithmetic operations have significant
advantage over standard implementations in terms of
path delay and memory. A carry-free multiplier thus
designed takes lesser time than standard addition itself.
It has been analyzed that the most optimized carry-free
implementations are painful to design, so a modular
approach of combining Carry-Free Adders to make
more complex arithmetic modules is practical.

ACKNOWLEDGMENT

The author would like to thank Sujoy Sinha Roy and
Prof. Ingrid Verbauwhede of KU Leuven, Belgium, for
the opportunity to collaborate with them on this work.

REFERENCES

[1] P. Kogge and H. Stone, A parallel algorithm for the efficient
solution of a general class of recurrences, IEEE Transactions
on Computers (T-C), vol. 22, pp. 786-793, 1973.

[2] B. Parhami, Computer Arithmetic - Algorithms and Hardware
Designs. Oxford University Press, 2000.

[3] A. Avizienis, Signed-digit number representations for fast par-
allel arithmetic, IRE Transactions on Electronic Computers, vol.
10, no. 3, pp. 389-400, 1961.

[4] B. Parhami, Generalized signed-digit number systems: A uni-
fying framework for redundant number representations, IEEE
Transactions on Computers (T-C), vol. 39, no. 1, pp. 89-98,
1990.

[5] F. Kharbash, G. M. Chaudhry, Reliable Binary Signed Digit
Number Adder Design, IEEE Computer Society Annual Sym-
posium on VLSI, pp 479-484, 2007.

[6] J. Moskal, E. Oruklu and J. Saniie, Design and Synthesis of
a Carry-Free Signed-Digit Decimal Adder, IEEE International
symposium on Circuits and Systems, pp. 1089-1092, 2007.

[7] R. Rani, N. Sharma, L. K. Singh, Fast Computing using Signed
Digit Number System, IEEE proceedings of International Con-
ference on Control, Automation, Communication And Energy
Conservation, 2009.

[8] K. Schneider, A. Willenbucher, A New Algorithm for Carry-
Free Addition of Binary Signed-Digit Numbers, IEEE 22nd
International Symp. Field-Programmable Custom Computing
Machines, 2014.

[9] B. Parhami, Carry-free addition of recoded binary signed-digit
numbers, IEEE Transactions on Computers (T-C), vol. 37, no.
11, pp. 1470-1476, 1998.

[10] M. Joye and S. M. Yen, Optimal left-to-right binary signed-
digit recoding, IEEE Transactions on Computers (T-C), vol. 49,
no. 7, pp. 740-748, 2000.

[11] J. U. Ahmed, A. A. S. Awwal, Multiplier design using RBSD
number system, Proceedings of the 1993 National Aerospace
and Electronics Conference, vol. 1, pp. 180-184, 1993.

[12] A. K. Cherri, M. S. Alam, Recoded and nonrecoded trinary
signed-digit multipliers designs using redundant bit representa-
tions, Aerospace and Electronics Conference 1998. NAECON
1998. Proceedings of the IEEE 1998 National, pp. 505-512,
1998, ISSN 0547-3578, 1998.

[13] T. N. Rajashekhar and O. Kal, Fast Multiplier Design using
Redundant Signed-Digit Numbers, International Journal of Elec-
tronics, vol .69, no. 3, pp. 359-368, 1990.

[14] A. Karatsuba and Y. Ofman, Multiplication of Many-Digital
Numbers by Automatic Computers, Proceedings of the USSR
Academy of Sciences. 145: 293-294. Translation in the aca-
demic journal Physics-Doklady, 7 (1963), pp. 595-596, 1962.

[15] A. A. S. Awwal and J. U. Ahmed, Fast carry free adder
design using QSD number system, Proceedings of the IEEE
1993 National Aerospace and Electronic Conference, vol 2, pp.
1085-1090, 1993.

[16] R. Rani, L. K. Singh and N. Sharma, A Novel design of High
Speed Adders Using Quaternary Signed Digit Number Sys-
tem, International Journal of Computer and Network Security
(IJCNS), Vol. 2, No. 9, pp. 62-66, 2010.

[17] N. W. Umredkar, M. A. Gaikwad, Review of Quaternary
Adders in Voltage Mode Multi-Valued Logic, International Jour-
nal of Computer Applications (09758887), 2013.

[18] S. Dubey, R. Rani, VLSI Implementation of Fast Addition using
Quaternary Signed Digit Number System, IEEE International
Conference on Emerging Trends in Comp...ICECCN 2013.

[19] O. Ishizuka, A. Ohta, K. Tannno, Z. Tang, D. Handoko, VLSI
design of a quaternary multiplier with direct generation of par-
tial products, Proceedings of the 27th International Symposium
on Multiple-Valued Logic, pp. 169-174, 1997.

[20] S. Datla and M. Thornton, Quaternary Voltage-Mode Logic
Cells and Fixed-Point Multiplication Circuits, Multiple-Valued
Logic (ISMVL) 2010 40th IEEE International Symposium on,
pp. 128-133, 2010, ISSN 0195-623X, 2010.

[21] N. Sharma, B. S. Rai and A. Kumar, Design of RBSD Adder
and Multiplier Circuits for High Speed Arithmetic Operations
and Their Timing Analysis, Special Russian Issue: Advances
in Computer Science and Engineering, Research in Computing
Science, pp. 243-25, 2006.


