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Abstract
Batch normalization has been widely used to
improve optimization in deep neural networks.
While the uncertainty in batch statistics can act as
a regularizer, using these statistics specific to the
training set hurts generalization in certain tasks.
Recently, group normalization has been shown
to yield similar or better performance than batch
normalization. In this work, we study whether the
conditional formulation of group normalization
can improve generalization compared to condi-
tional batch normalization. We evaluate perfor-
mances on visual question answering, few-shot
learning, and conditional image generation.

1. Introduction
Recent studies propose different benchmarks for evaluat-
ing task specific models for their generalization capacity.
While in this paper, we only focus on visual question an-
swering (VQA), few-shot learning and generative models,
any improvement in this direction can be beneficial for other
domains. Here specifically, we explore the effect of activa-
tion normalization techniques used in deep neural networks,
in particular Batch Normalization (BN) and Group Normal-
ization (GN). We compare the performance of deep neural
networks using different normalization schemes in each task.
We wish for the community to take advantage of the results
of this exploration for the best choice of normalization, in
terms of the benefit and disadvantage of each type.

2. Background
Several normalization methods have been proposed to ad-
dress the problem of covariate shift in deep neural networks
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(Ioffe & Szegedy, 2015; He et al., 2016; Lei Ba et al., 2016).
To stabilize the range of variation of network activations xi,
methods such as BN first normalize the activations:

x̂i =
1

σi
(xi − µi) , (1)

with mean µi and standard deviation σi:
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∑
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xk, σi =
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(xk − µi)
2
+ ε (2)

Then, to increase representational power, the normalized
activations are scaled and shifted using learnable parameters
γ and β:

yi = γx̂i + β (3)

In the case of 2D feature maps, i is a four-dimensional index
i = (iN , iC , iH , iW ), whose elements index the features
along the batch, channel, height and width axis, respectively.
In BN, Si in Equation 2 is defined as

BN =⇒ Si = {k|kC = iC}, (4)

the set of all pixels sharing the same channel axis, resulting
in µ and σ being computed along the (N,H,W ) axes.

However, (Lei Ba et al., 2016) points out that BN is highly
affected by batch size, and introduces Layer Normaliza-
tion (LN), which normalizes activations within each layer,
without any dependence on batch statistics. (Ulyanov et al.,
2016) introduce Instance Normalization (IN) in the context
of image stylization. It is essentially normalization at every
channel in each layer, a more extreme version of LN. Then
(Wu & He, 2018) introduced GN as a trade-off between LN
and IN. It aptly summarizes LN, IN and GN using the set
notation as:

GN =⇒ Si = {k|kN = iN , b
kC
C/G

c = b iC
C/G

c}, (5)

i.e. normalization is performed per sample, within groups of
size G along the channel axis. For LN, G = channel width,
while in IN, G = 1.

Conditional Batch Normalization (CBN) (De Vries et al.,
2017) is a conditional variant of BN, where the learnable
re-normalization parameters γ and β are functions of some
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condition to the network, such as the class label. De Vries et
al. introduced CBN for the task of VQA in (De Vries et al.,
2017; Perez et al., 2018). (Dumoulin et al., 2017) introduce
Conditional Instance Normalization (CIN), a conditional
variant of IN similar to CBN, replacing BN with IN. In our
experiments, we also use the conditional variants of LN
and GN, i.e. Conditional Layer Normalization (CLN), and
Conditional Group Normalization (CGN).

It was recently concluded that internal covariance shift has
little to do with the success of BN (Santurkar et al., 2018).
Instead, BN smooths the optimization landscape. Hence, it
is useful to understand whether the advantages of BN carry
over to other normalization techniques.

Recently, (Kurach et al., 2018) conducted an empirical study
on only image generation in an adversarial setting. We
conduct a more specific study on normalization techniques
in a greater variety of tasks.

2.1. Visual Question Answering

The task here is to answer a question based on an image.
The way this task is usually solved is that the question is fed
to a parametric model conditioned on the image, which then
provides an answer.

One recent successful model for VQA is the Feature-wise
Linear Modulation (FiLM) architecture (Perez et al., 2018).
The most useful feature introduced here to solve the problem
was the conditional normalization technique. We experi-
ment with replacing BN with the recently proposed GN (Wu
& He, 2018), to investigate how their performance differs.

2.2. Few-Shot Learning

The field of few-shot learning, i.e. learning to classify given
only a small set of samples, has recently received a lot of
interest. In episodic M -way, k-shot classification tasks,
meta-learning models, learn to adapt a classifier given mul-
tiple M -class classification tasks, with k support samples
for each class. The meta-learner thus has to solve the prob-
lem of generalizing between these tasks given the limited
number of training samples. In this work, we experiment
with the recently proposed Task dependent adaptive metric
(TADAM) (Oreshkin et al., 2018), which leverages CBN,
which we replace with CGN to compare performances.

2.3. Conditional Image Generation

One of the most successful ways of generating images
in recent times is using Generative Adversarial Networks
(GAN)s (Goodfellow et al., 2014). More recently, the gener-
ators that worked best stack multiple ResNet-style (He et al.,
2016) architectural blocks, involving two ReLU-CBN-Conv
operations with an upsampling operation. These blocks are

followed by a ReLU-BN-Conv operation to transform the
last features into the shape of an image (with 3 channels).

Such models include Wasserstein GAN using gradient
penalty (WGAN-GP) (Gulrajani et al., 2017), Self-Attention
GAN (SAGAN) (Zhang et al., 2018) and BigGAN (Brock
et al., 2019). In all our experiments, we simply replaced
the BN modules in the networks with the other types of
normalization, and compared.

However, we found it difficult to reproduce the results of
the SAGAN and BigGAN. Since the architectures of the
three models are similar, and all we changed was the nor-
malization technique, we expect our results on WGAN-GP
to carry over to these models as well.

3. Experiments
3.1. Visual Question Answering

To study how CGN performs in VQA tasks, we exper-
imented with several small variations of the FiLM ar-
chitecture (Perez et al., 2018) on three VQA datasets:
CLEVR Compositional Generalization Test (CLEVR-
CoGenT) (Johnson et al., 2017a), Figure Question Answer-
ing (FigureQA) (Kahou et al., 2017). and the recently intro-
duced Spatial Queries On Object Pairs (SQOOP) (Bahdanau
et al., 2018).

The original architecture in (Perez et al., 2018) consists
of a sequence of four FiLM-ed residual block (He et al.,
2016). The scale and shift parameters are generated as an
affine transform of a gated recurrent unit (GRU) question
embedding. The output of the last residual block is fed to a
classifier, which consists of a layer of 512 1×1 convolutions,
global max-pooling, followed by a fully-connected ReLU
layer using BN and the softmax layer, which outputs the
probability of each possible answer. We train the three
variants with CGN:

• all conditional and regular BN layers are replaced with
corresponding conditional or regular GN layers.

• all CBN layers are replaced with CGN, regular BN
layers are left unchanged.

• all CBN layers are replaced with CGN, regular BN
layers are left unchanged, except the fully-connected
hidden layer in the classifier, which doesn’t use nor-
malization.

For all datasets, the input to the residual network are image
features extracted from layer conv4 of a ResNet-101 (He
et al., 2016), pretrained on ImageNet(Russakovsky et al.,
2015), as in FiLM (Perez et al., 2018) and other works (John-
son et al., 2017a;b).
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All models are trained using the Adam optimizer (Kingma
& Ba, 2014) with a learning rate of 3e−4, an ε of 1e−5
and weight decay coefficient of 1e−5, with all other hyper-
parameters the same as in the original paper.

3.2. Few-Shot Learning

In this section, we compare CGN with CBN in the few-shot
classification model TADAM (Oreshkin et al., 2018). We
experiment with two episodic five-shot, five-class classifica-
tion tasks, as in Oreshkin et al. (2018). TADAM is a metric-
based few-shot classifier. It uses a similarity metric based
on embeddings from a residual network to compare data
samples to class templates. The residual network employs
CBN conditioned on a task embedding, which is simply
the average of class embeddings for the given task. For
the GN version we replaced all conditional and regular BN
layers with their corresponding GN version. For a com-
plete description of the experimental setup, including all
other hyperparameters, we refer the reader to Oreshkin et al.
(2018).

3.3. Conditional Image Generation

We check the effect of CBN, CGN, CLN and CIN on image
generation. We use WGAN-GP (Gulrajani et al., 2017) on
the CIFAR10 dataset (Krizhevsky, 2009). We replicated the
architecture mentioned in the original paper. This is the case
of CBN. For the other cases, we replace every CBN in the
model with the respective normalization technique. We use
4 groups in the case of CGN. We use the same optimization
mentioned in the original paper - learning rate of 2e−4 for
both Generator and Discriminator, 5 discriminator updates
per generator update, and Adam optimizer on a single GPU
(NVIDIA P100) with a batch size of 64.

For each case of normalization, we calculate two scores that
are widely used in the community to check the quality of
image generation — Inception Score (IS) (Salimans et al.,
2016) and Fréchet Inception Distance (FID) (Heusel et al.,
2017). We use public code to calculate IS1 and FID2. Num-
bers for true data may differ from original papers since these
are PyTorch (Paszke et al., 2017) implementations, while
the papers use TensorFlow (Abadi et al., 2015). But, we
compare the same metric for true and generated data.

We first calculate the IS of the true images of CIFAR-10, for
each class separately. Then, during training of the model,
we sample images from the generator at regular intervals,
and calculate the IS and FID of those images for each class
separately. This allows us to see the effect of the differ-
ent normalization techniques on the conditional generation
process. We average our results from multiple runs.

1https://github.com/sbarratt/inception-score-pytorch
2https://github.com/mseitzer/pytorch-fid

4. Results
4.1. Visual Question Answering

Tables 1, 2 3 list our results in VQA. We see that in all cases,
models using GN perform very similar to models using BN.
We can perhaps conclude that using GN instead of BN has
no critical effect on the performance. Hence, it might be
preferable to use GN in cases where the batch statistics are
unreliable to compute, for example in cases of smaller batch
sizes.

Table 1. Classification accuracy on CLEVR-CoGenT val2 aver-
aged over three runs.

Model Accuracy (%)

FiLM (Perez et al., 2018) 75.5± 0.7
CGN (all GN) 75.7± 0.3
CGN (BN in stem, classifier no norm) 75.7± 0.6
CGN (BN in stem and classifier) 75.8± 0.5

Table 2. Classification accuracy on FigureQA validation2 averaged
over three runs.

Model Accuracy (%)

FiLM (Perez et al., 2018) 91.6± 0.1
CGN (all GN) 91.3± 0.4
CGN (BN in stem, classifier no norm) 91.1± 0.2
CGN (BN in stem and classifier) 91.3± 0.5

4.2. Few-Shot Learning

Table 4 shows our results for few-shot learning using
TADAM and it’s CGN version. We see here too that us-
ing GN instead of BN yields relatively similar performance.

4.3. Conditional Image Generation

We computed the IS and FID of the samples generated by the
model during training for each class separately, to compare
the effects of the different normalization techniques. We
see in Figure 1 that all normalization techniques perform
similarly.

We also see that it is easier for the model to generate certain
classes such as automobile and truck, than other classes, and
that this is true for all cases of normalization. We conclude
that the type of normalization does not have a critical effect
on the conditional generation process.

This would imply that, at least in the space of generative
models such as GANs operating at lower batch sizes, using
BN or GN would not lead to significant change in the quality
of generated images. So it might be advantageous to use
GN instead of BN, since GN is not affected by batch size,
and does not require synchronization across data samples.
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Figure 1. Class-wise Inception Score (IS) of samples generated by WGAN-GP model trained on CIFAR-10. (Blue: IS of true data)

Table 3. Classification accuracy on SQOOP averaged over three
runs.

Dataset Model Accuracy (%)

1 rhs/lhs FiLM (BN) 72.4± 0.5
CGN (all GN) 74.0± 2.8
CGN (BN — no norm) 73.8± 0.3
CGN (BN — classifier) 74.9± 3.9

2 rhs/lhs FiLM (BN) 85.0± 4.2
CGN (all GN) 86.7± 6.3
CGN (BN — no norm) 83.1± 0.4
CGN (BN — classifier) 85.9± 5.3

4 rhs/lhs FiLM (BN) 97.0± 1.9
CGN (all GN) 91.4± 0.3
CGN (BN — no norm) 91.6± 1.9
CGN (BN — classifier) 99.5± 0.2

35 rhs/lhs FiLM (BN) 99.8± 0.1
CGN (all GN) 99.8± 0.1
CGN (BN — no norm) 99.8± 0.1
CGN (BN — classifier) 99.8± 0.2

5. Conclusion
We presented a set of experiments for VQA, few-shot learn-
ing and image generation tasks using models that rely on
BN for conditional computation. As the performance of
BN heavily depends on the batch size, and on how well
training and test statistics match, we replaced BN with GN.
We experimentally showed that CGN can be a good replace-

Table 4. Five-way five-shot classification accuracy on Fewshot-
CIFAR100 (Oreshkin et al., 2018) and Mini-Imagenet (Vinyals
et al., 2016) averaged over three runs, where TADAM (BN) is
from (Oreshkin et al., 2018)

Dataset Model Accuracy (%)

FC100 TADAM (BN) 53.0± 0.6
TADAM (GN) 52.8± 0.5

Mini-Imagenet TADAM (BN) 76.4± 0.5
TADAM (GN) 74.1± 0.4

ment for CBN for conditional computation, without losing
performance in some cases. We hope that this study serves
as a reference for research in simple general purpose meth-
ods for conditional computation . In most experiments, we
simply replaced BN with GN and did not use extensive
hyper-parameter optimization. We also did not experiment
with different batch sizes, so as to have a fair comparison.
In settings with large input spaces and conditioning infor-
mation, such as video question answering (Mun et al., 2017;
Tapaswi et al., 2016), CGN might find an application high-
lighting its strengths compared with CBN. Studying such
tasks remains as future work. As the authors of Wu & He
(2018) point out, GN lacks the regularization effect that
BN has due to noisy batch statistics. They propose to ex-
plore combinations of GN with an appropriate regularization
scheme to improve performance. We see an investigation
of regularization of both GN and CGN as a worthwhile
research direction.



Comparing normalization in conditional computation tasks, ICML 2019

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Is-
ard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M.,
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