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Introduction

What we see in a video is governed by the underlying 3D structure of the scene being captured, and the physical properties
that determine its dynamics. Several of these properties are difficult to estimate from video without explicitly modeling
the principles of motion and image formation. We tackle this ill-posed problem of reconstructing physical and geometric
properties of objects from video, using differentiable simulation. To this end, we built ∇Sim (“gradSim”), a versatile
end-to-end differentiable simulator, that enables backpropagation from video pixels to the physical and geometric parameters
which generate them. We derive a general physical simulation framework that applies a discrete-time adjoint method
to support a broad range of differentiable models, including 3D rigid bodies, solid and thin-shell deformable bodies, and
incompressible fluids. All physical simulations can be differentiably rendered to generate videos, enabling the estimation
of physical attributes and control parameters from video supervision alone. ∇Sim can solve a variety of inverse simulation
and visual model-predictive control tasks, without relying on state-based supervision such as object velocities/positions.

∇Sim - Differentiable simulation

Typically, differentiable physics simulation [12, 10, 2, 3] and rendering [4, 7, 1, 6, 8] have been treated as mutually exclusive
tasks. Here, we take on a unified view of simulation in general, to mean physics simulation and rendering. ∇Sim comprises
two major components (cf. Fig. 1): a differentiable physics engine that computes the physical states of the world at each
time instant, and a differentiable renderer that renders a 2D image.

Our differentiable physics engine computes the state of the world at each instant by integrating a series of time-stepping
equations. For accurate physical simulations, a naive implementation using reverse mode automatic differentiation entails
tracking the history of several thousand states for each second of simulation. To circumvent this, we instead consider our
physics engine as a differentiable operation that provides an implicit relationship between a state vector at the start of a
time step, and the updated state at the end of the time step. By application of the implicit function theorem, and using a
source translation approach, we design an automatically differentiable physics engines that allows us to implement simulation
kernels in a subset of python syntax, and computes the adjoints of each kernel at runtime, generating C++/CUDA [5] code.
Kernels are wrapped as custom autograd operations on PyTorch tensors, which allows users to focus on the definition of
physical models, and leverage the PyTorch tape-based autodiff to track the overall program flow.

Through this we are able to simulate: (a) Deformable Solids (a finite element model (FEM) with a stable Neo-Hookean
constitutive model [9]), (b) Deformable Thin-Shells (a Neo-Hookean FEM with additional lift/drag forces), (c) Rigid Bodies
(through Newton-Euler equations), and (d) contacts (relaxed friction [11] model).

Our differentiable renderer expects scene descriptions as input and generates color images as output, all according
to a sequence of image formation stages defined by the forward graphics pipeline. The scene description includes a complete
geometric descriptor of scene elements, their associated material properties, light sources, and camera parameters. The
rendering process is not generally differentiable, as visibility and occlusion events introduce discontinuities. Our experiments
employ two differentiable alternatives to traditional rasterization, SoftRas [7] and DIB-R [1], both of which rely on smoothing
triangle edges by replacing their discontinuities with sigmoids. This has the effect of blurring triangle edges into semi-transparent
boundaries, thereby removing the non-differentiable discontinuity of traditional rasterization.
∇Sim performs differentiable physics and rendering at independent and adjustable rates, allowing us to trade computation

for accuracy by rendering fewer frames than physics simulation updates.

Experiments

In our physical parameter estimation from video experiments, we presented our algorithm with a video of an object
with forces applied to it (e.g. objects falling, sliding, bouncing). When simulating rigid bodies, we estimated the mass,
elasticity, or friction of the objects by comparing the video produced by our differentiable pipeline with the reference frames
with an L2 loss. Compared to several baselines (e.g. a non-differentiable simulator approximating the gradient through
REINFORCE, a CNN directly predicting the object properties, and an oracle with access to the dynamic states of the
system), we found our method only beat by the oracle. During these experiments, we noticed that the loss landscape of
our pipeline allowed for smooth and reliable optimization to the one local and global optimum (except for very small property
values which lead to instabilities in any simulator), compared to the loss landscape obtained from the non-differentiable
simulation, where the correct solution is in a local, not in the global optimum. We also ran experiments to estimate soft body
properties (masses, elasticities, etc.), and we were able to achieve competitive results close to the oracle, despite only having
video frames as input. We also ran several visuomotor control experiments, where the learning algorithm is presented with
a final frame of a deformable object in a target position and orientation and we train a neural network controller to actuate
the object and move it to the target. Figure 2 shows how our technique manages to reach the desired pose in most cases.



Figure 1: ∇Sim: Given video observations of an evolving physical system (e), we randomly initialize scene object properties (a)
and evolve them over time using a differentiable physics engine (b), which generates states. Our renderer (c) processes states, object
vertices and global rendering parameters to produce image frames for computing our loss. We back-propagate to object shape and
physical properties to refine our estimates.

Figure 2: Qualitative results: ∇Sim accurately estimates physical parameters for diverse, complex environments. For control-fem
and control-walker experiments, we train a neural network to actuate a soft body towards a target image (GT). For control-cloth,
we optimize the cloth’s initial velocity to hit a target pose (GT), all in under nonlinear lift/drag forces. For deformable experiments,
we optimize the material properties of a beam to match a video. In the rigid experiments, we estimate contact parameters
(elasticity/friction) and object density to match a video (GT). We visualize entire time sequences (t) with color-coded blends.
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