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Abstract

We introduce threestudio, an open-source, unified, and

modular framework specifically designed for 3D content

generation. This framework extends diffusion-based 2D im-

age generation models to 3D generation guidance while

incorporating conditions such as text and images. We de-

lineate the modular architecture and design of each com-

ponent within threestudio. Moreover, we re-implement

state-of-the-art methods for 3D generation within three-

studio, presenting comprehensive comparisons of their de-

sign choices. This versatile framework has the potential to

empower researchers and developers to delve into cutting-

edge techniques for 3D generation, and presents the capa-

bility to facilitate further applications beyond 3D genera-

tion. Code is available at https://github.com/threestudio-

project/threestudio.

1. Introduction

Generative modeling has revolutionized the 1D

text/audio and 2D image/video domains. However, 3D

content generation still poses challenges due to the scarcity

of 3D datasets, and the computational complexity in

3D space. To reduce the reliance on 3D models, recent

methods leverage the capabilities of image diffusion

models to distill 3D structures from 2D image generative

spaces. The pioneering diffusion-guided 3D generation

method, DreamFusion [16], introduced Score Distillation

Sampling (SDS) to enable using a text-to-image model

as guidance to generate a 3D Neural Radiance Field

(NeRF) [14] through iterative optimization. Subsequent

research has extensively investigated the diffusion-guided

3D generation framework, encompassing various scene

representations, diffusion guidance, and training strategies.

These explorations have aimed to enhance different aspects

of the framework, such as geometric details [4], high

fidelity and diversity [30], high resolution [18], mesh

generation [27], faster generation [13], image-to-3D
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generation [12, 21, 26, 11], etc.

However, integrating all these enhancements or using

specific components from these methods for a particular 3D

generation task is a complex endeavor. Many of these meth-

ods are independent and built upon diverse codebases. Ad-

ditionally, evaluating these methods with different parame-

ter settings and initialization is challenging.

In this paper, we present threestudio, a modular frame-

work in open-sourced codebase, designed for 3D content

creation through the extension of diffusion-based 2D im-

age generation models. By harnessing the capabilities of

diffusion models and integrating them with innovative 3D

representations, threestudio offers a versatile and modu-

lar platform that empowers researchers and developers to

explore cutting-edge techniques for 3D content creation.

Throughout the paper, we present an account of how var-

ious methods for text-to-3D and image-to-3D synthesis are

abstracted within threestudio, discuss the core components

of this framework, and provide best practices for achieving

high-quality results.

2. Framework Design

threestudio is designed following several principles:

• Modular: users can easily combine different compo-

nents to form a pipeline;

• Extensible: users are free to customize their own com-

ponents and pipelines;

• Flexible: users can chain different pipelines together

for better performance;

• Configurable: users can easily build custom pipelines

and specify all the hyper-parameters in a single config-

uration file without changing the code.

Based on the observation that existing pipelines mainly

follow a similar workflow, we formulate the pipeline

with the combination of several independent components,

namely data synthesizer, geometry, renderer, material,

background, diffusion guidance, and prompt processor. By

defining unified interfaces for these components, we can
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Figure 1: The abstract pipeline for text/image conditioned 3D generation in threestudio.

implement these pipelines in a unified framework with all

the benefits mentioned above. The detailed functionality of

these components are described below.

Data Synthesizer. The role of the data synthesizer is to

produce camera extrinsic and intrinsic parameters used in

optimization, as well as lighting conditions if necessary.

Typically, the camera parameters are randomly sampled

given the range of elevation angles, azimuth angles, dis-

tances to the scene center, and field of view. The light-

ing conditions are sampled according to a pre-defined strat-

egy [16, 10]. The users can easily tweak these parameters

to focus on a certain level of detail or region of the scene

during optimization.

Geometry. The geometry component defines how the 3D

object/scene is represented. There are several choices for

the geometry representation, such as implicit density field,

implicit signed distance field (SDF), density grid, SDF

grid [24], and triangular mesh. Each representation offers

distinct advantages, and no single representation is univer-

sally suitable for all scenarios. For instance, implicit density

fields are easy to optimize but the resolution of the rendered

images is limited, while triangular meshes can be efficiently

rendered at higher resolutions but are prone to local minima

in optimization. To fully utilize the advantages of different

geometry representations, we implement the conversion be-

tween some of them, as shown in Fig. 2. Typically, we could

start from an implicit density field or implicit SDF represen-

tation to get a coarse shape, and convert the geometry to an

SDF grid to optimize the scene using high-resolution mesh

renderings. This coarse-to-fine strategy is adopted in many

existing pipelines [10, 27, 30].

Renderer. The differentiable renderer component serves

the purpose of generating rendered images (e.g., RGB color,

opacity, depth, or normal) of the scene, as well as back-

propagating gradients from the diffusion guidance to scene

parameters. We integrated various differentiable rendering

methods suitable to the different geometry representations.

For implicit density fields, we use the NeRF [14] renderer.

For implicit SDF, we offer the NeuS [29] and VolSDF [31]

renderer. As for the tetrahedral SDF grid representation and

triangular meshes, we employ a differentiable rasterizer [9]

for rendering.

Figure 2: Conversion between geometry representations.

Material and Background. The material component

plays a crucial role in determining the appearance of the

3D object under specific camera and lighting conditions.

In threestudio, we offer a variety of commonly used ma-

terials, including albedo-only, diffuse, neural radiance [14],

and physically-based rendering (PBR) materials. The back-

ground is modeled as an environment map, providing colors

based on the ray directions. It can be parameterized by a

small neural network, an explicit texture map [28], or sim-

ply a single color.

Diffusion Guidance. The diffusion guidance component

is the core of the generation process. It leverages a pre-

trained diffusion-based 2D image generation model and

guides the update of scene parameters throughout the op-

timization process. Typical algorithms for this guidance

are Score Distillation Sampling (SDS) [16], Score Jaco-

bian Chaining (SJC) [28], and Variational Score Distillation

(VSD) [30]. We have implemented all these algorithms, and

support various open-source pre-trained models, such as

Stable Diffusion [19], ControlNet [32], InstructPix2Pix [2],

DeepFloyd-IF, and Zero-1-to-3 [11].
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Figure 3: Results obtained by our TextMesh-ProlificDreamer pipeline, Magic3D [10] and DreamFusion [16].

Prompt Processor. For text conditioning, we utilize a

prompt processor component paired with the diffusion guid-

ance to obtain feature embeddings for the input prompt. We

implement view-dependent prompting [16], which appends

a modifier to the prompt describing the direction (ªfront

vieº, ªside viewº, ªback viewº or ªoverhead viewº) accord-

ing to the sampled camera. Additionally, we integrate tech-

niques like PerpNeg [1] and Prompt Debiasing [8] to ad-

dress the ªJanus problemº [15].

3. Text to 3D

The community has recently witnessed a surge of text-to-

3D generation efforts, starting with DreamFusion [16] and

SJC [28], and progressing towards higher quality [10, 30],

faster generation [13], and more compact geometry repre-

sentation [27, 4]. Using our modular framework, all these

methods can be easily implemented by combining different

components.

Tab. 1 compares some of the components and design

choices made by these methods. Detailed optimization

strategies like regularization terms and noise level anneal-

ing are not covered in the table. Our framework allows for

exploring advanced 3D generation solutions by combining

different components and chaining different pipelines. For

instance, leveraging the observation that implicit SDF rep-

resentation can yield compact meshes and VSD [30] can

add realistic texture details to the geometry, we chain the

geometry stage of TextMesh [27] with the geometry and

texture stages from ProlificDreamer [30], yielding promis-

ing results compared to existing methods (see Fig. 3).

4. Image to 3D

Tab. 2 compares image-to-3D methods and some of the

components and design choices they make. In Fig. 4, we

compare the 3D results from our Zero-1-to-3 implementa-

tion in threestudio with other prior methods.

Figure 4: Image-conditioned generation results using our

Zero-1-to-3 pipeline, RealFusion [12], 3DFuse [21], and

Make-It-3D [26].

For the task of generating a 3D object from an image,

we primarily rely on the recent Zero-1-to-3 model [11]. It

was trained by fine-tuning Stable Diffusion [20] on images

from Objaverse [5], a dataset of 3D objects. Zero-1-to-3 is

conditioned on an image i.e., the source view of the object,

and a relative pose between the source view and a target

view. It then generates the target view of the same object.

This Zero-1-to-3 model can then be used as the diffusion

guide to generate a 3D object from an image using SDS or

SJC [11]. Through extensive experimentation, we found a

new Zero1-to-3 SDS-based configuration that outperforms

SJC’s visual quality and is fast: the entire optimization pro-

cess takes 5 minutes on one A100 40GB. We also list some

insights we found that help the generation:

• Elevation: Fig. 5 shows that specifying a suitable el-

evation of the conditioning image is critical to obtain

3D objects with good quality.



Table 1: State-of-the-art text-to-3D methods in threestudio. * Code not released, reproduced by us.

Method Stage Geometry Renderer Material Diffusion Guide

DreamFusion∗ [16] - Implicit Density Field NeRF Renderer Diffuse DeepFloyd-IF (SDS)

LatentNeRF [13] - Implicit Density Field NeRF Renderer Albedo Only Stable Diffusion (SDS)

SJC [28] - Density Grid NeRF Renderer Albedo Only Stable Diffusion (SJC)

Magic3D∗ [10]
Coarse Implicit Density Field NeRF Renderer Diffuse DeepFloyd-IF (SDS)

Refine Tetrahedra SDF Grid NVDiff Rasterizer Diffuse Stable Diffusion (SDS)

Fantasia3D [4]
Geometry Implicit SDF NVDiff Rasterizer - Stable Diffusion (SDS)

Texture Tetrahedra SDF Grid NVDiff Rasterizer PBR Stable Diffusion (SDS)

ProlificDreamer∗ [30]

Coarse Implicit Density Field NeRF Renderer Albedo Only Stable Diffusion (VSD)

Geometry Tetrahedra SDF Grid NVDiff Rasterizer - Stable Diffusion (SDS)

Texture Tetrahedra SDF Grid NVDiff Rasterizer Albedo Only Stable Diffusion (VSD)

TextMesh∗ [27] Geometry Implicit SDF NeuS Renderer Diffuse DeepFloyd-IF (SDS)

Table 2: State-of-the-art image-to-3D methods in threestudio.

Method Stage Geometry Renderer Material Diffusion Guide

RealFusion [12] - NeRF Renderer Implicit Density Field Albedo Only Stable Diffusion (SDS)

Zero-1-to-3 [11] - NeRF Renderer Implicit Density Field Albedo Only Zero-1-to-3 (SDS)

• Noise level: Fig. 6 shows that higher noise levels at

the start of training are crucial to obtain faster results.

Hence, we initially set the minimum noise level to 0.7,

then anneal it to 0.2 during training, while maintaining

the maximum noise level at 0.98.

Figure 5: Left: image condition. Middle and Right: 3D

generations from the left image, assuming elevations of 10°

and 0°, respectively. 10° assumption is qualitatively better.

Figure 6: Effect of changing noise level (shown below). The

top row is the noisy image of the initial 3D render, bottom

row is 1-step predicted clean image.

5. Applications Beyond 3D Object Generation

The modular nature of threestudio can also facilitate po-

tential applications beyond 3D object generation. By ap-

plying special geometry representations and diffusion guid-

ance, threestudio can support advanced tasks, including:

3D Editing. threestudio supports several diffusion-based

3D editing methods, such as InstructNeRF2NeRF [7] and

Control4D-Static [22], using InstructPix2Pix [2] and Con-

trolNet [32] to guide the editing process respectively.

Text to 4D. threestudio can be extended to support text-

to-4D generation [25] by implementing temporal-aware ge-

ometry representations like D-NeRF [17], HexPlane [3], K-

Planes [6], and Tensor4D [23], and applying a diffusion-

based video generation model as guidance.

6. Conclusion

We present threestudio, a modular framework for

diffusion-guided 3D generation. The extensible, flexible,

and configurable design enables researchers to readily ex-

plore innovative techniques in this burgeoning field. We

hope that threestudio will inspire novel directions in algo-

rithm design and ultimately expand the horizons of what is

possible with diffusion-based 3D generation. Through con-

tinued innovation built upon threestudio, we envision sub-

stantial progress toward fully realizing the promise of con-

trollable, high-fidelity 3D synthesis.
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